Home
Class 12
MATHS
If z=r e^(itheta) , then prove that |e^(...

If `z=r e^(itheta)` , then prove that `|e^(i z)|=e^(-r s inthetadot)`

Text Solution

Verified by Experts

`z = re^(i0) = r (cos theta + i sin theta)`
`rArr iz = ir (cos theta + i sin theta)`
`=- rsin theta + ir cos theta`
`rArr e^(1z) = e^((-rsin theta+ ir cos theta))`
`= e^((-rsin theta)) e^((ri cos theta))`
`rArr |e^(iz)|=|e^(-rsin theta)||e^(r icos theta)|`
`= e^((- r sin theta))|e^(ialpha)|," ""where"alpha = r cos theta`
`= e^(-rsin theta)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.4|7 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r sintheta)

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.

If z!=0 is a complex number, then prove that R e(z)=0 rArr Im(z^2)=0.

If z=z_0+A( bar z -( bar z _0)), w h e r eA is a constant, then prove that locus of z is a straight line.

The three angular points of a triangle are given by Z=alpha, Z=beta,Z=gamma,w h e r ealpha,beta,gamma are complex numbers, then prove that the perpendicular from the angular point Z=alpha to the opposite side is given by the equation R e((Z-alpha)/(beta-gamma))=0

Write the following in z=a+ib form: z=e^(-itheta)

Let alpha+ibeta be a complex number and let x+iy=e^(alpha+ibeta) where (x,y,alpha,beta in R) then we define log_e(x+iy)=alpha+ibeta x+iy=re^(itheta) ,where r=sqrt(x^2+y^2),theta=tan^(-1)(y/x), alpha+ibeta=log_e(x+iy)=log_e(r.e^(itheta)=log_er+itheta so log_e(x+iy)=log_er+itheta log_e(z)=log_eabsz+iarg(z) log_e(-i) equals

Let alpha+ibeta be a complex number and let x+iy=e^(alpha+ibeta) where (x,y,alpha,beta in R) then we define log_e(x+iy)=alpha+ibeta x+iy=re^(itheta) ,where r=sqrt(x^2+y^2),theta=tan^(-1)(y/x), alpha+ibeta=log_e(x+iy)=log_e(r.e^(itheta)=log_er+itheta so log_e(x+iy)=log_er+itheta log_e(z)=log_eabsz+iarg(z) if sin(log_ei)=a+ib then value of a and b is

For any complex number z prove that |R e(z)|+|I m(z)|<=sqrt(2)|z|

If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e^(ipi//4)],[e^(-ipi//3),1,e^(i2pi//3)],[e^(-ipi//4),e^(-i2pi//3),1]|