Home
Class 12
MATHS
Find the complex number z satisfying R e...

Find the complex number `z` satisfying `R e(z^2) =0,|z|=sqrt(3.)`

Text Solution

Verified by Experts

`z = x +iy`
or `z^(2) = x^(2) -y + 2ixy `
` rArr Re(z^(2)) = x^(2) -y^(2)`
Also, `|z| = sqrt(x^(2) + y^(2))`
`rArr x^(2) -y^(2) = 0, x^(2) + y^(2) = 3`
`rArr x^(2) = y^(2) = (3)/(2)`
`rArr x =pm sqrt((3)/(2)), y = pm sqrt((3)/(2))`
`rArr z = pm sqrt((3)/(2)) pm sqrt((3)/(2))i`
Thus, there are four complex numbers.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.4|7 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Find the non-zero complex number z satisfying z =i z^2dot

The complex number z satisfying the equation |z-i|=|z+1|=1 is

Find the complex number satisfying system of equation z^(3)=-((omega))^(7) and z^(5).omega^(11)=1

The greatest positive argument of complex number satisfying |z-4|=R e(z) is A. pi/3 B. (2pi)/3 C. pi/2 D. pi/4

Find the complex number omega satisfying the equation z^3=8i and lying in the second quadrant on the complex plane.

Show that the complex numbers z_(1),z_(2),z_(3) satisfying (z_(1)-z_(3))/(z_(2)-z_(3))=(1-sqrt(3))/(2) are the verticels of an equilaterla triangle.

If the complex number z satisfies the equations |z-12|/|z-8i|=(5)/(3) and |z-4|/|z-8| =1, "find" z.

Modulus of non zero complex number z satisfying barz +z=0 and |z|^2-4z i=z^2 is _________.

Let z be a complex number satisfying |z+16|=4|z+1| . Then

Let z_(1)=2+3iandz_(2)=3+4i be two points on the complex plane . Then the set of complex number z satisfying |z-z_(1)|^(2)+|z-z_(2)|^(2)=|z_(1)-z_(2)|^(2) represents -