Home
Class 12
MATHS
If |z-i R e(z)|=|z-I m(z)| , then prove ...

If `|z-i R e(z)|=|z-I m(z)|` , then prove that `z` , lies on the bisectors of the quadrants.

Text Solution

Verified by Experts

`z = x +iy`
`rArr Re (z) = x, Im (z) = y`
`|z - iRe(z)|=|z- Im (z)|`
`rArr |x + iy -ix|=|x + iy -y|`
`rArr x^(2) +(x-y)^(2) = (x-y)^(2) + y^(2)`
`rArr x^(2) = y^(2)`
` rArr |x| = |y|`
Hence, z lies on the bisectors the quadrants.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.4|7 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If |z-1| + |z + 3| le 8 , then prove that z lies on the circle.

If |z/| barz |- barz |=1+|z|, then prove that z is a purely imaginary number.

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z|=2a n d(z_1-z_3)/(z_2-z_3)=(z-2)/(z+2) , then prove that z_1, z_2, z_3 are vertices of a right angled triangle.

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r sintheta)

If |(Z-5i)/(Z+5i)|=1 ,then show that Z in R

Identify locus z if R e(z+1)=|z-1|

If a r g["z"_1("z"_3-"z"_2)]=a r g["z"_3("z"_2-"z"_1)] , then prove that O ,z_1, z_2, z_3 are concyclic, where O is the origin.

If z=(a+ib)^5+(b+ia)^5 then prove that Re(z)=Im(z), where a,b in R.

Let z=x+iy and omega=(1-iz)/(z-i). If |omega|=1 show the in the complex plane the point z lies on the real axis.