Home
Class 12
MATHS
The value of z satisfying the equation l...

The value of `z` satisfying the equation `logz+logz^2+dot+logz^n=0i s`

A

`cos.(4mpi)/(n(n+1)) +i sin.(4mpi)/(n(n+1)),m = 0,1,2,...`

B

`cos.(4mpi)/(n(n+1)) -i sin.(4mpi)/(n(n+1)),m = 0,1,2,...`

C

`sin.(4mpi)/(n) +i cos.(4mpi)/(n),m = 0,1,2,...`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
` log z + log z^(2) + log z^(3) + ……+ log z^(n) =0`
`rArr log (z z^(2) z^(3) …..z^(n))=0`
`rArr log(z^((n(n+1))/(2))) =0`
`or z^((n(n+1))/(2)) = 1`
`= (cos 0^(@) + isin 0^(@))^((2)/(n(n+1)))`
` = (cos 2 mpi + isin 2mpi)^((2)/(n(n+1))), m = 0,1,2,3,.....`
`= cos.(4mpi)/(n(n+1)) +isin .(4mpi)/(n(n+1)), m = 0,1,2,`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.11|6 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

The value of z satisfying the equation logz+logz^2+dot+logz^n=0 i s (a) cos(4mpi)/(n(n+1))+isin(4mpi)/(n(n+1)),m=0,1,2... (b) cos(4mpi)/(n(n+1))-isin(4mpi)/(n(n+1)),m=0,1,2... (c) sin(4mpi)/(n(n+1))+isin(4mpi)/(n(n+1)),m=0,1,2,... (d) 0

The values of x satisfying the equation |x-2|^2+|x-2|-6=0 , are-

Solve the equation z^3= z (z!=0)dot

The general values of theta satisfying the equation 2sin^2theta-3sintheta-2=0 is (n in Z)dot

The complex number z satisfying the equation |z-i|=|z+1|=1 is

Find the complex number omega satisfying the equation z^3=8i and lying in the second quadrant on the complex plane.

If z is a complex number satisfying the equation z^6 +z^3 + 1 = 0 . If this equation has a root re^(itheta) with 90^@<0<180^@ then the value of theta is

Find the value (s) of r satisfying the equation "^69 C_(3r-1)-^(69)C_(r^2)=^(69)C_(r^2-1)-^(69)C_(3r)dot

If z and w are two complex numbers simultaneously satisfying the equations, z^3+w^5=0 and z^2 . overlinew^4 = 1, then

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

CENGAGE PUBLICATION-COMPLEX NUMBERS-single correct Answer type
  1. If z(1),z(2),z(3) are the vertices of an equilational triangle ABC s...

    Text Solution

    |

  2. If z=6-i, then find z-barz

    Text Solution

    |

  3. If z=6+i, then find z+barz

    Text Solution

    |

  4. If z=5-3i, then find z-barz

    Text Solution

    |

  5. If z=5-3i, then find z+barz

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. z1a n dz2 lie on a circle with center at the origin. The point of inte...

    Text Solution

    |

  8. If arg ((z(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z(1)|...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. If sec alpha and alpha are the roots of x^2-p x+q=0, then (a) p^2=q(q-...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. If pa n dq are distinct prime numbers, then the number of distinct ima...

    Text Solution

    |

  13. Given z is a complex number with modulus 1. Then the equation [(1+i a)...

    Text Solution

    |

  14. The value of z satisfying the equation logz+logz^2+dot+logz^n=0i s

    Text Solution

    |

  15. If n in N >1 , then the sum of real part of roots of z^n=(z+1)^n is...

    Text Solution

    |

  16. Which of the following represents a points in an Argand pane, equid...

    Text Solution

    |

  17. Let a be a complex number such that |a|<1a n dz1, z2,z3,... be the ve...

    Text Solution

    |

  18. Let z=x+i y be a complex number where xa n dy are integers. Then, the ...

    Text Solution

    |

  19. Let z be a complex number such that the imaginary part of z is nonzero...

    Text Solution

    |

  20. Let complex numbers alpha and 1/alpha lies on circle (x-x0)^2+(y-y0)^2...

    Text Solution

    |