Home
Class 12
MATHS
If a m p(z1z2)=0a n d|z1|=|z2|=1,t h e n...

If `a m p(z_1z_2)=0a n d|z_1|=|z_2|=1,t h e n` `z_1+z_2=0` b. `z_1z_2=1` c. `z_1=z _2` d. none of these

A

`z_(1)+z_(2) = 0`

B

`z_(1)z_(2) = 1`

C

`z_(1)=barz_(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B, C

`amp(z_(1)z_(2)) = 0`
` rArr amp z_(1) + ampz_(2) = 0`
` therefore amp z_(1) + amp z_(2) = amp barz_(2)`
Since `|z_(1)| = |z_(2)|`, we get `|z_(1)| = |barz_(1)|`.
So, `z_(1) = barz_(2)`. Also, `barz_(1)z_(2) = barz_(2)z_(2) = |z_(2)|^(2) = 1` because `|z_(2)|=1`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MATRIX MATCH TYPE|9 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise single correct Answer type|92 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If amp(z_(1)z_(2))=0and |z_(1)|=|z_(2)|=1, "then"

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then a. z_1 = z_2 b. |z_2|^2 = z_1*z_2 c. z_1*z_2 = 1 d. none of these

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If z_1nez_2 and abs(z_2)=1 the abs((z_1-z_2)/(1-barz_1z_2)) =

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If absz_1=absz_2=absz_3=1 and z_1+z_2+z_3=0 , then z_1, z_2, z_3 are vertices of

For two unimodular complex number z_1a n dz_2 [[barz_1, -z_2], [barz_2, z_1]]^(-1) [[(z_1, z_2], [-barz_2, barz_1]]^(-1) is equal to [(z_1, z_2), (z_1bar, z_2bar)]^ b. [1 0 0 1] c. [1//2 0 0 1//2] d. none of these

The points, z_1,z_2,z_3,z_4, in the complex plane are the vertices of a parallelogram taken in order, if and only if (a) z_1+z_4=z_2+z_3 (b) z_1+z_3=z_2+z_4 (c) z_1+z_2=z_3+z_4 (d) None of these

If z_1, z_2 in C ,z_1^2+z_2^2 in R ,z_1(z_1^2-3z_2^2)=2 and z_2(3z_1^2-z_2^2)=11 , then the value of z_1 ^2+z_2 ^2 is 10 b. 12 c. 5 d. 8

z_1a n dz_2 lie on a circle with center at the origin. The point of intersection z_3 of he tangents at z_1a n dz_2 is given by 1/2(z_1+( z )_2) b. (2z_1z_2)/(z_1+z_2) c. 1/2(1/(z_1)+1/(z_2)) d. (z_1+z_2)/(( z )_1( z )_2)