Home
Class 12
MATHS
If sec alpha and alpha are the roots of ...

If sec `alpha and alpha` are the roots of `x^2-p x+q=0,` then (a) `p^2=q(q-2)` (b) `p^2=q(q+2)` (c)`p^2q^2=2q` (d) none of these

A

`-(pi)/(4)`

B

`(pi)/(4)`

C

`(3pi)/(4)`

D

`-(3pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`sqrt(5-12i) = sqrt((3-2i)^(2)) = pm (3-2i)`
`sqrt(-5-12i)= sqrt((2-3i)^(2)) = pm (2-3i)`
`rArr z = sqrt(5-12i) + sqrt(5-12i) = sqrt((3-2i)^(2)) = pm (3-2i)`
`sqrt(-5-12i)= sqrt((2-3i)^(2)) = pm (2-3i)`
`rArr z = sqrt(5-12i) + sqrt(-5-12i)`
`=- 1-i, -5 + 5i,5-5i, 1+i`
Therefore, principal values of arg are `- 3pi//4, 3pi//4,-pi//4, pi//4`.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MATRIX MATCH TYPE|9 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise single correct Answer type|92 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If sec alpha and cosec alpha are the roots of x^2-px+q=0 then prove that p^2=q(q+2)

If sec alpha and "cosec" alpha are the roots of x^(2)- px+q=0 then show that p^(2)=q(q+2)

If p and q are the roots of the equation x^2+px+q =0, then

If , p , q are the roots of the equation x^(2)+px+q=0 , then

If alphaandbeta be the roots of the equation x^(2)-px+q=0 then, (alpha^(-1)+beta^(-1))=(p)/(q) .

If alpha,beta are the roots of a x^2+b x+c=0a n dalpha+h ,beta+h are the roots of p x^2+q x+r=0t h e n h= a. -1/2(a/b-p/q) b. (b/a-q/p) c. 1/2(b/a-q/p) d. none of these

If p=a+bomega+comega^2 , q=b+comega+aomega^2 , and r=c+aomega+bomega^2 , where a ,b ,c!=0 and omega is the complex cube root of unity, then (a) p+q+r=a+b+c (b) p^2+q^2+r^2=a^2+b^2+c^2 (c) p^2+q^2+r^2=-2(p q+q r+r p) (d) none of these

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta -alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

If alpha_1,alpha_2 are the roots of equation x ^2-p x+1=0a n dbeta_1,beta_2 are those of equation x^2-q x+1=0 and vector alpha_1 hat i+beta_1 hat j is parallel to alpha_2 hat i+beta_2 hat j , then p= a. +-q b. p=+-2q c. p=2q d. none of these

If the difference of the roots of the equation x^2-px+q=0 is 1, then show that p^2+4q^2= (1+2q)^2 .