Home
Class 12
MATHS
If p=a+bomega+comega^2, q=b+comega+aomeg...

If `p=a+bomega+comega^2`, `q=b+comega+aomega^2`, and `r=c+aomega+bomega^2`, where `a ,b ,c!=0` and `omega` is the complex cube root of unity, then (a) `p+q+r=a+b+c` (b) `p^2+z^2+r^2=a^2+b^2+c^2` (c) `p^2+z^2+r^2=-2(p q+q r+r p)` (d) none of these

A

If p,q,r lie on the circle |z|=2, the trinagle formed by these point is equilateral.

B

`p^(2)+q^(2)+r^(2) =a^(2)+b^(2)+c^(2)`

C

`p^(2)+q^(2) + r^(2) = 2 (pq+qr + rp)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, C

`p+q+r=a + bomega + comega^(2) + b + aomega^(2)+ c + aomega + bomega^(2)`
`therefore p +q+ r = (a+b+c)(1+ omega + omega^(2))=0`
p,q,r lie on the circle `|z|=2`, whose circumcenter is origin. Also `(p+q+ r)//3=0` . Hence the cenroid with cicumcenter. So, the triangle is equilateral.
Now ,`(P +q+ r)^(2)= 0`
`rArr p^(2) +q^(2) + r^(2) = -2pqr[(1)/(p)+(1)/(q) +(1)/(r)]`
`=-2pqr[(1)/(a+bomega+comega^(2))+(1)/(omega(bomega^(2)+c+aomega^(2)))+(1)/(c+aomega +bomega^(2))]`
`=2pqr[(1)/(omega^(2)(aomega +bomega^(2)+c))+(1)/(omega(bomega^(2) + c+ aomega))+(1)/(c+aomega+bomega^(2))]`
`(-2pqr)/(aomega+ bomega^(2)+c)[(1)/(omega^(2))+(1)/(omega)+ (1)/(1)]= 0" "(2)`
Hence `p^(2)+q^(2) + r^(2) = 2` (pq + qr + rp)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MATRIX MATCH TYPE|9 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise single correct Answer type|92 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If p=a+bomega+comega^2 , q=b+comega+aomega^2 , and r=c+aomega+bomega^2 , where a ,b ,c!=0 and omega is the complex cube root of unity, then (a) p+q+r=a+b+c (b) p^2+q^2+r^2=a^2+b^2+c^2 (c) p^2+q^2+r^2=-2(p q+q r+r p) (d) none of these

If x=a+b,y=aomega+bomega^(2),z=aomega^(2)+bomega then show that xyz=a^(3)+b^(3) "where " omega is a complex cube root of 1 . Find square root of - 2i.

If sec alpha and alpha are the roots of x^2-p x+q=0, then (a) p^2=q(q-2) (b) p^2=q(q+2) (c) p^2q^2=2q (d) none of these

If the ratio of the roots of a x ^2+2b x+c=0 is same as the ratio of roots of p x^2+2q x+r=0, then a. (2b)/(a c)=(q^2)/(p r) b. b/(a c)=(q^2)/(p r) c. (b^2)/(a c)=(q^2)/(p r) d. none of these

If p+q+r=0=a+b+c , then the value of the determinant |[p a, q b, r c],[ q c ,r a, p b],[ r b, p c, q a]|i s (a) 0 (b) p a+q b+r c (c) 1 (d) none of these

If omega is the imaginary cube root of unity and a+b+c=0 then show that (a+bomega+comega^2)^3+(a+bomega^2+comega)^3=27abc

prove that , (a+bomega+comega^(2))^(3)+(a+bomega^(2)+comega)^(3)=27abc if a+b+c=0.

If omega is the imaginary cube root of 1 then prove that (a+bomega+comega^2)^3+(a+bomega^2+comega)^3 = (2a-b-c)(2b-a-c)(2c-a-b)

Solve:- (p^2q^2r^4 - p^3q^5r^3 + p^5q^3r^2) div p^2q^2r^2

If tangents P Qa n dP R are drawn from a variable point P to thehyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,(a > b), so that the fourth vertex S of parallelogram P Q S R lies on the circumcircle of triangle P Q R , then the locus of P is (a) x^2+y^2=b^2 (b) x^2+y^2=a^2 (c) x^2+y^2=a^2-b^2 (d) none of these