Home
Class 12
MATHS
If a1,a2,a3, ,an are in A.P., where ai >...

If `a_1,a_2,a_3, ,a_n` are in A.P., where `a_i >0` for all `i` , show that `1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot`

Text Solution

Verified by Experts

Given, `a_(1),a_(2),….,a_(n)` are in A.P., `AAa_(i)gt0`
`thereforea_(1)-a_(2)=a_(2)-a_(3)=….=A_(n-1)-a_(n)=-d` (a constant)
Now, `1/(sqrt(a_(1))+sqrt(a_(2)))+1/(sqrt(a_(2))+sqrt(a_(3)))+….+1/(sqrt(an-1)+sqrt(a_(n)))`
`=(sqrt(a_(1))-sqrt(a_(2)))/(a_(1)-a_(2))+(sqrt(a_(2))-sqrta_(3))/(a_(2)-a_(3))+...+(sqrt(a_(n-1))-sqrt(a_(n)))/(a_(n-1)-a_(n))`
(On rationalizing denominators)
`=(sqrt(a_(1))-sqrt(a_(2)))/(-d)+(sqrta_(2)-sqrta_(3))/(-d)+...+(sqrt(a_(n-1))-sqrt(a_(n)))/(-d)`
`=(sqrt(a_(n))-sqrt(a_(1)))/d`
`=(a_n-a_(1))/(d(sqrt(a_(n))+a_(a_(1))))`
`=((n-1)d)/(d(sqrt(a_(n))+sqrt(a_(1))))=(n-1)/(sqrt(a_(n))+sqrt(a_(1)))`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.13|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.14|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.11|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If a_(1) ge 0 for all t and a_(1), a_(2), a_(3),….,a_(n) are in A.P. then show that, (1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))+ (1)/(sqrt(a_(n-1))+sqrt(a_(n))) = (n-1)/(sqrt(a_(1))+sqrt(a_(n)))

If a_1,a_2,a_3,.......a_n are in AP where a_1 gt 0foralli then the value of 1/(sqrta_1+sqrta_2)+1/(sqrta_2+sqrta_3)+....1/(sqrta_(n-1)+sqrta_n=

The sum of the series (1)/(sqrt1+sqrt2)+ (1)/(sqrt2+ sqrt3)+ ...+ (1)/(sqrt(n)+sqrt(n+1)) is equal to-

If a_1,a_2,a3,...,a_n are in A.P then show that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n)

If a_1, a_2,a_3, ,a_n is an A.P. with common difference d , then prove that "tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+......+tan^(-1)(d/(1+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

Evaluate : underset(nrarroo)"lim"(sqrt(1+n^(2))-sqrt(1+n))/(sqrt(1+n^(3))-sqrt(1+n))

If a ,a_1, a_2, a_3, a_(2n),b are in A.P. and a ,g_1,g_2,g_3, ,g_(2n),b . are in G.P. and h s the H.M. of aa n db , then prove that (a_1+a_(2n))/(g_1g_(2n))+(a_2+a_(2n-1))/(g_1g_(2n-1))++(a_n+a_(n+1))/(g_ng_(n+1))=(2n)/h

If a_1,a_2,.....a_n are in H.P., then the expression a_1a_2 + a_2a_3 + ... + a_(n-1)a_n is equal to

a_1, a_2, a_3, in R-{0} and a_1+a_2cos2x+a_3sin^2x=0 for all x in R , then