Home
Class 12
MATHS
Find the value of underset((inejnek))(su...

Find the value of `underset((inejnek))(sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo))1/(3^(i)3^(j)3^(k))`.

Text Solution

Verified by Experts

`underset((inejnek))(sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo))1/(3^(i)3^(j)3^(k))`
=sum when I,j,k are independent
`-3xx`(sum when any two of I,j,k are equal)
`+2xx` (sum when i=j=k)
`=sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)1/(3^(i)3^(j)3^(k))-3sum_(i=0)^(oo)sum_(k=0)^(oo)1/(9^(i)3^(k))+2sum_(i=0)^(oo)1/(27^i)`
`=(sum_(i=0)^(oo)1/3^(i))^(3)-3(sum_(i=0)^(oo)1/3^(k))+2(sum_(i=0)^(oo)1/27^(i))`
`=(3/2)^(3)-3(9/8)(3/2)+2(27/26)`
`=81/208`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES 5.9|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES 5.10|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES 5.7|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (where |a| gt 1 )

Find the value of underset(0leiltjlen)(sumsum)(-1)^(i-j+1)(.^(n)C_(i)*.^(n)C_(j)) .

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))

sum_(i = 1)^n sum_(j = 1)^i sum_(k = 1)^j 1 is equal to

Evaluate sum_(k=1)^11(2+3^k)

The sum sum_(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum_(i=1)^(10)1 is equal to

The value of sum_(i-1)^nsum_(j=1)^isum_(k=1)^j1=286 , then the value of n equals

The limit of underset(n=1)overset(1000)sum(-1)^(n)x^(n)" as "x to oo

Fill in the blanks Value of overset(3)underset(I = 1)sum 10i^3 is______.

Find the sum of the series sum_(k=1)^(360)(1/(ksqrt(k+1)+(k+1)sqrt(k)))