Home
Class 12
MATHS
Given are positive rational numbers a ,b...

Given are positive rational numbers `a ,b , c` such that `a+b+c=1,` then prove that `a^a b^bc^c+^^c b^a b^a c^blt=1.`

Text Solution

Verified by Experts

Using weighted A.M ., G.M. inequality, we have
` (ca+ab+bc)/(a+b+c) ge (a^cb^ac^b)^((1)/(a+b+c))`
or `ca+ab+bc gr (a^cb^ac^b)`
Similarly,
` (ba+cb+ac)/(b+c+a) ge (a^b b^c c^a)^((1)/(a+b+c)) or ba+cb+ac ge (a^b b^c c^a)`
`(aa+b b+c c)/(b+c+a)ge(a^ab^bc^c)^((1)/(a+b+c))or aa +b b +c c ge (a^ab^bc^c)`
Adding togather, we get
` (a+b+c)(a+b+c)ge a^a b^b c^c +a^b +b^c +c^a + a^c +b^a+c^b`
`rArr 1 ge a^a b^b c^c+a^b b^c c^a +a^c b^a c^b`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.4|4 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise EXERCISES (Single Correct answer type)|20 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.2|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

Given are positive rational numbers a ,b , c such that a+b+c=1 , then prove that a^a b^bc^c+a^b b^c c^a+ a^c b^a c^b<1.

If a ,b , a n dc are distinct positive real numbers such that a+b+c=1, then prove that (1-a)(1-b)(1-c)> 8.

If a,b,c are three distinct positive real number such that a^2+b^2+c^2=1 , then ab+bc+ca=1 is

If a+c = 2b and 2/c= 1/b+1/d then prove that a:b = c:d.

If a, b and c are three positive real numbers, show that a^2 + b^2 + c^2 ge ab + bc + ca

If a,b,c are distinct positive real numbers and a^(2)+b^(2) +c^(2)=1 then the value of ab+bc+ca is-

If a : b = b : c , then prove that (abc(a+b+c)^(3))/((ab+bc+ca)^(3)) = 1

If a,b,c are different positive real numbers such that b+c−a,c+a−b and a+b−c are positive, then (b+c−a)(c+a−b)(a+b−c)−abc is a. positive b. negative c. non-positive d. non-negative

For positive real numbers a ,bc such that a+b+c=p , which one holds? (a) (p-a)(p-b)(p-c)lt=8/(27)p^3 (b) (p-a)(p-b)(p-c)geq8a b c (c) (b c)/a+(c a)/b+(a b)/clt=p (d) none of these

If a,b,c are positive real no., then prove that [(1+a)(1+b)(1+c)]^7 gt 7^7a^4b^4c^4 .