Home
Class 12
MATHS
If x ,y in R^+ satisfying x+y=3, then t...

If `x ,y in R^+` satisfying `x+y=3,` then the maximum value of `x^2y` is.

Text Solution

Verified by Experts

The correct Answer is:
4

We have `(2((x)/(y))+y)/(3)ge(((x)/(2))^2y)^(1//3)`
`rArr ((3)/(3))^3ge (x^2y)/(4)`
`x^(2) 4`
Therefore, maximum value of `x^2y` is 4.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Jee Advanced (Single|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

The maximum value of y=8-x^(2) is -

If x , y in R satisfies (x+5)^2+(y-12)^2=(14)^2, then the minimum value of sqrt(x^2+y^2) is__________

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

If x+y=60, x, y gt 0 , then the maximum value of xy^(3) is-

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If 2x+3y=4 , find the maximum or minimum value of xy.

If (x,y) lies on the ellipse x^(2)+2y^(3) = 2 , then maximum value of x^(2)+y^(2)+ sqrt(2)xy - 1 is

If (log)_(10)(x^3+y^3)-(log)_(10)(x^2+y^2-x y)lt=2, and x ,y are positive real number, then find the maximum value of x ydot

For any x ,y , in R^+,x y >0 . Then the minimum value of (2x)/(y^3)+(x^3y)/3+(4y^2)/(9x^4) is.