Home
Class 12
MATHS
Let a,b,c,d and e be positive real numbe...

Let a,b,c,d and e be positive real numbers such that `a+b+c+d+e=15` and `ab^2c^3d^4e^5=(120)^3xx50`. Then the value of `a^2+b^2+c^2+d^2+e^2` is ___________.

Text Solution

Verified by Experts

The correct Answer is:
55

`(a + (b)/(2) + (b)/(2) + (c )/(3) + (c )/(3) + (c )/(3) + (d)/(4) + (d)/(4) + (d)/(4) + (d)/(4) + (e )/(5) + (e )/(5) + (e )/(5) + (e )/(5) + (e )/(5))/(15) = 1`
`:. G.M = 1`
`G.M = ((ab^(2) c^(3) d^(4) e^(5))/(a.2^(2).3^(3).4^(4).5^(5)))^(1//5) = 1`
`:. A.M= G.M`
`implies a = (b)/(2) = (c )/(3) = (d)/(4) = (e )/(5) = lambda`
`lambda = 1`
`:. a = 1, b = 2, c = 3, d = 4, e = 5`
`:. a^(2) + b^(2) + c^(2) + d^(2) + e^(2) = 1^(2) 2^(2) + 3^(2) + 4^(2) + 5^(2) = 55`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Jee Advanced (Single|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If a,b,c,d are positive real number such that a+b+c+d=2 , then M=(a+b)(c+d) satisfies the relation:

Let a , b , c , d be positive integers such that (log)_a b=3/2a n d(log)_c d=5/4dot If (a-c)=9, then find the value of (b-d)dot

If a,b,c ,d and p are distinct real number such that (a^2+b^2+c^2)p^2-2(ab+bc+cd)p+(b^2+c^2+d^2)le0 then a,b,c,d are in

If a,b,c ,d are distinct integer in AP such that d=a^2+b^2+c^2 , then a+b+c+d is

Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then the sum of all possible values of |a-d|=

If intx^2dote^(-2x)dx=e^(-2x)(a x^2+b x+c)+d , then the value of |a/(b c)| is______

If a,b,c,d be in G.P. show that (b-c)^2 + (c-a)^2 + (d-b)^2 = (a-d)^2 .

If a,b,c,d ar all real numbers and (a^(2) +b^(2)) d^(2)-2(a+c) bd + (b^(2) +c^(2))=0, then a,b,c are in -

If a,b,c be three positive numbers in A.P. and E=(a+8b)/(2b-a)+(8b+c)/(2b-c) , then a value of E can be

If a,b,c,d are in continued proportion then show that (b-c)^2+(c-a)^2+(b-d)^2= (a-d)^2 .