Home
Class 12
MATHS
Consider the system of equations x1+x(2)...

Consider the system of equations `x_1+x_(2)^(2)+x_(3)^(3)+x_(4)^(4)+x_(5)^(5)=5` and `x_1+2x_2+3x_3+4x_4+5x_5=15` where `x_1,x_2,x_3,x_4,x_5` are positive real numbers. Then numbers of `(x_1,x_2,x_3,x_4,x_5)` is ___________.

Text Solution

Verified by Experts

The correct Answer is:
1

Using A.M. `ge` G.M., We get
`x_(2)^(2)+1 ge 2x_(2)`
`x_(3)^(3)+1+1ge 3x_3`
`x_(4)^(4)+1+1+1ge 4x_(4)`
`x_(5)^(5)+1+1+1+1ge 5x_(5)`
Adding these, we get
`x_1+x_(2)^(2)+x_(3)^(3)+x_(4)^(4)+x_(5)^(5) +10ge x_1+2x_2+3x_3+4x_4+5x_5`
`x_1+x_(2)^(2)+x_(3)^(3)+x_(4)^(4)+x_(5)^(5)=5`
The equality holds if `x_1=x_2=x_3=x_4=x_5=1` .
So, there is only one posibility for `(x_1x_2,x_3,x_4,x_5)`.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Jee Advanced (Single|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

Consider the system of linear equations: x_(1) + 2x_(2) + x_(3) = 3 2x_(1) + 3x_(2) + x_(3) = 3 3x_(1) + 5x_(2) + 2x_(3) = 1 The system has

How many integral solution are these to the system of equations x_1 + x_2 + x_3 + x_4 + x_5 = 20 and x_1 + x_2 = 15 when x_k ge 0 ?

Find the domain of the function f(x)=(x^(2)+3x+5)/(x^(2)-5x+4)

The equation 4(5x^(2)-7x+2)=5(4x^(2)-6x+3) is

Find the derivative of ((x)^(5/2)(x-3)^(3/2))/((7x-5)^(4/3))

Find the number of solutions of equation 2^x+3^x+4^x-5^x=0

Let's find the roots of the equations 3(x-4)^2 + 5(x-3)^2 = (2x - 5) (4x -1) - 40

Solve x(x+2)^2(x-1)^5 (2x-3)(x-3)^4 ge 0

int(x^(3)+5x^(2)-4)/(x^(2))dx

int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=