Home
Class 12
MATHS
Solve: (xcosx-sinx)dx=x/ysinxdy...

Solve: `(xcosx-sinx)dx=x/ysinxdy`

Text Solution

Verified by Experts

We have, `(xcosx-sinx)dx=x/ysinxdy`
`therefore (xycosx-ysinx)dx=xsinxdy`
`rArr xcosx=(ydx+xdy)sinx`
`rArr xycosx=(ydx+xdy)sinx`
`rArr cotxdx=(d(xy))/(xy)`
On integrating, we get
`log_(e)sinx=log_(e)xy+log_(e)c`
or `sinx=cxy`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

Solve: 2(sinx -cos2x)-sin2x(1+2sinx) + 2cosx =0

Solve: sinx-sin2x=cos2x-cosx

Evaluate: int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

Evaluate: int (cos x-sinx )/sqrt(sin 2x)dx

If int(2cosx-sinx+lambda)/(cosx+sinx-2)dx=Aln|cosx+sinx-2|+B x+C , then the value of A+B+|lambda| is______

int e^(x) sinx dx

Solve sinx > -1/2

int dx/(sin2x-sinx)

Solve |sinx+cosx|=|sinx|+|cosx|,x in [0,2pi] .

Solve cos2x >|sinx|,x in (pi/2,pi)