Home
Class 12
MATHS
Solve e^((dy)/(dx))=x+1, given that when...

Solve `e^((dy)/(dx))=x+1,` given that when `x=0,y=3.`

Text Solution

Verified by Experts

The correct Answer is:
`y=(x+1)(log_(e)(x+1))-x+3`

`e^((dy)/(dx))=x+1`
or `(dy)(dx) = log(x+1)`
or `intdy=intlog(x+1)dx`
or `y=(x+1)log(x+1)-x+c`
when x=0, y=3 is c=3
Hence, the solution is `y=(x+1)log(x+1)-x+3`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

Solve x^2((dy)/(dx))+y=1

Solve log((dy)/(dx))=4x-2y-2 , given that y=1 when x=1.

Solve (dy)/(dx)=e^(x+1)

(dy)/(dx)=(x+y)^(2) , given that y=1, when x=0

Solve ((dy)/(dx))+(y/x)=y^3

Solve: (dy)/(dx) = 1-x+y-xy

Solve: (dy)/(dx)+y/x = e^x

Solve : x(dy)/(dx) - y = x

Solve: x(dy)/(dx)+3y = x^2

Solve: (1-x^2)(dy)/(dx)-xy=x^2 , given y = 2 when x= 0.