Home
Class 12
MATHS
Solve (x-y^(2)x)dx=(y-x^(2)y)dy....

Solve `(x-y^(2)x)dx=(y-x^(2)y)dy`.

Text Solution

Verified by Experts

The correct Answer is:
`(x^(2)-1)=C(y^(2)-1)`

We have `x(1-y^(2))dx=y(1-x^(2))dy`
`therefore (2x)/(x^(2)-1)dx=(2y)/(y^(2)-1)dy`
Integrating both sides, we get
`log_(e)(x^(2)-1)=log_(e)(y^(2)-1)log_(e)C`
`therefore (x^(2)-1)=C(y^(2)-1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

Solve : (x+xy^(2))dx+(y+x^(2)y)dy=0

Solve :(1+y^(2))dx=(tan^(-1)y-x)dy

Solve : (1+y^(2))dx=(tan^(-1)y-x)dy , given that y=0 when x = -1.

y(1+x^(2))dy=x(1+y^(2))dx

y(1-x^(2))dy=x(1+y^(2))dx

Solve y e^(x/y)dx=(x e^(x/y)+y^2)dy ,(y!=0)dot

Solve: x^(2)dy+y(x+y)dx=0

Solve : (dy)/(dx)=e^(y-x)+2

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^2+2y^2+(y^4)/(x^2)

Solve : (x^(2)-y^(2)) dx + 2xy dy = 0