Home
Class 12
MATHS
Solve sec^(2)x tany dx+sec^(2)y tanx dy=...

Solve `sec^(2)x tany dx+sec^(2)y tanx dy=0`

Text Solution

Verified by Experts

The correct Answer is:
`(tanx)(tany)=c`

The given equation can be rewritten as
`int(sec^(2)x)/(tanx)dx+ int(sec^(2)y)/(tany)dy=logc`
or `log tanx+log tany=logc,` where c is an arbitary positive constant.
or `tanxtany=c`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

sec^(2)x tan y dx + sec^(2) y tan x dy = 0

Solve the equation: sec^2xtany \ dx+sec^2ytanx \ dy=0

Solve: (dy)/(dx)+y tan x= 2x+x^2 tanx

e^(x) tan y dx + (1 - e^(x))sec^(2)y dy = 0

Solve : dy/dx+y tan x = sec x

Solve : (x+ tan y) dy = sin 2 y dx

Solve ( 1+e^(x).y) dx + xe^(x) dy = 0

Solve: 2^(x-y) dx + 2^(y-x) dy = 0

Solve (d^2y)/(dt^2) = tan y sec ^2 y , given dy/dt = 0 when y = 0

Solve : (1 + tan y ) (dx - dy ) + 2x dy = 0