Home
Class 12
MATHS
If a function 'f' satisfies the relation...

If a function 'f' satisfies the relation `f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R` and `f(0)=1=f^(')(0)`. Then find `f(x)`.

Text Solution

Verified by Experts

The correct Answer is:
`f(x) = e^(e^(x)-1)`

We have `f(x)f^('')(x)-f^(')(x)^(2)=0`
Divide by `f(x)f^(')(x)`, we get
`(f^('')(x))/(f^(')(x))-1=(f^(')(x))/(f(x))`
Integrating both sides, we get ,
`log_(e)f^(')(x)-x=log_(e)f(x)+C`
Since, `f(0)=1=f^(')(0),C=0`
`therefore log_(e)f^(')(x)-log_(e)f(x)=x`
`rArr (log_(e)) f^(')(x)/(f(x))=e^(x)`
Integrating both sides, we get
`log_(e)f(x)=e^(x)+C`
Using `f(0)=1`, we have `C=-1`
`therefore f(x)=e^(e^(x))-1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then Number of roots of the equation f(x)=e^(x) is

If the function f satisfies the relation f(x+y)+f(x-y)=2f(x)xxf(y), AA x, y, in R and f(0) ne 0 , then

If the function f satisfies the reation f(x+y)+f(x-y)=2f(x) f(y) Aax,yin RR and f(0) ne 0 then ____

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,and f(0)=3, and if f(3)=3, then the value of f(-3) is ______________

A real valued function satisfies the relation f(x+y)=f(x)+f(y)+(e^x-1)(e^y-1) , AAx,y in R . If f'(0) = 2, find f(x).

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

y=f(x), where f satisfies the relation f(x+y)=2f(x)+xf(y)+ysqrt(f(x)) , AAx,y epsilon R and f'(0)=0.Then f(6)is equal ______

A real valued function f (x) satisfied the functional relation f (x-y)=f (x)f(y) -f(a-x) f(a+y) where a is a given constant and f(0) =1. Then f (2a-x) is equal to-