Home
Class 12
MATHS
(dy)/(dx) = (2xy)/(x^(2)-1-2y)...

`(dy)/(dx) = (2xy)/(x^(2)-1-2y)`

Text Solution

Verified by Experts

The correct Answer is:
`x^(2)/2=1/y-2log_(e)y+c`

`(dy)/(dx) = (2xy)/(x^(2)-1-2y)`
or `x^(2)dy-(1-2y)dy=2xydx`
or `2xydx-x^(2)dy=-(1+2y)dy`
or `(yd(x^(2))-x^(2)dy)/(y^(2))-(1/y^(2)+2/y)dy`
or `d(x^(2)/y)=-(1/y^(2)+2/y)dy`
Integrating, we get `x^(2)/y=1/y-2logy=c`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

Solve: (x^2-1)(dy)/(dx) + 2xy = 2/(x^2-1)

(dy)/(dx)=(y^(2)-y+1)/(x^(2)-x+1)

(dy)/(dx)=(y^(2)+y+1)/(x^(2)+x+1)

"If "y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))))," then prove that "(dy)/(dx)=(y^(2)-x)/(2y^(3)-2xy-1)

(dy)/(dx)=1-x+y-xy

(dy)/(dx)=1+x+y+xy

(x^(2) -1) dy/dx + 2xy = 2/(x^(2)-1)

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

(1 + x^(2))(dy)/(dx) + 2xy = (1)/(1 + x^(2)), y = 0 when x= 1

The solutions of (dy)/(dx)=(x^(2)+y^(2)+1)/(2xy) satisfying y(1)=1 is given by -