Home
Class 12
MATHS
y(xy+1)dx+x(1+xy+x^(2)y^(2))dy=0...

`y(xy+1)dx+x(1+xy+x^(2)y^(2))dy=0`

Text Solution

Verified by Experts

The correct Answer is:
`-1/(2x^(2)y^(2))-1/(xy)+2log_(e)y=c`

`y(xy+1)dx+x(1+xy+x^(2)y^(2))dy=0`
`therefore (xy^(2)x+x^(2)ydy)+(ydx+xdy)+x^(3)y^(2)dy=0`
`rArr xyd(xy)+d(xy)+x^(3)y^(2)dy=0`
`rArr (d(xy))/(x^(3)y^(3))+(d(xy))/(x^(2)y^(2))+(dy)/(y)=0`
`rArr -1/(2x^(2)y^(2))-1/(xy) +log_(e)y=c`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

x^(2)dy+(x^(2)-xy+y^(2))dx=0

y^(2)dx+(x^(2)-xy)dy=0

The general solution of y^(2)dx+(x^(2)-xy+y^(2))dy=0 is -

(x^(2)-2xy)dy+(x^(2)-3xy+2y^(2))dx=0

(x^(2) - y^(2)) dx + 2xy dy = 0

Solve : (x+xy^(2))dx+(y+x^(2)y)dy=0

solve each of them. (x^(2) + xy) dy = (x^(2) + y^(2))dx .

(x^(2)+xy)(dy)/(dx)=x^(2)+y^(2)

(x^(2)-yx^(2))(dy)/(dx)+y^(2)+xy^(2)=0

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy