Home
Class 12
MATHS
Solve (dy)/(dx)+ycotx=sinx...

Solve `(dy)/(dx)+ycotx=sinx`

Text Solution

Verified by Experts

The correct Answer is:
`ysinx=1/4[2x-sin2x]+c`

Given equation is linear and
`P=cotx, Q=sinx`
`therefore I.F. = e^(int(cotxdx))=e^(logsinx)=sinx`
Hence, the solution is
`ysinx=int(sinxsinxdx+c)`
`=1/2int(1-cos2x)dx+c`
`=1/2[x-1/2sin2x]+c`
`therefore ysinx=1/y[2x-sin2x]+c`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

Solve the equation (dy)/(dx)+ycotx=sinx

Solve: (dy)/(dx) = (siny+x)/(sin2y-xcosy)

Solve x^2((dy)/(dx))+y=1

Solve (dy)/(dx)=x^2+1

solve x(dy)/(dx) - y + x sin ((y)/(x)) = 0

Solve (dy)/(dx)=(1+y)^2

Solve (dy)/(dx)=(x+y)^2

Solve (dy)/(dx)=e^(x+1)

Solve : x(dy)/(dx) - y = x

Solve: (dy)/(dx)+y/x = e^x