Home
Class 12
MATHS
Let f be a function defined on the inter...

Let f be a function defined on the interval `[0,2pi]` such that `int_(0)^(x)(f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt` and `f(0)=1`. Then the maximum value of `f(x)`is…………………..

Text Solution

Verified by Experts

The correct Answer is:
`1.125`

We have
`int_(0)^(x) (f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt`
Differentiate w.r.t. x, we get
`f^(')(x)-sin2x=0-f(x)tanx`
or `y^(')+ytanx=sin2x`, where `y=f(x)`
Above is a linear differential equation.
`I.F. =e^(inttanxdx)=secx`
Therefore, solution is
`ysecx=int2sinxdx`
or `ysecx=-2cosx+c`
or `y=cosx-2cos^(2)x`
`f(0)=1 rArr c=3`
`therefore f(x)=3cosx-2cos^(2)x`
`=-2[cosx-3/4]^(2)+9/8`
`therefore f(x)"max"=9/8`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

Let f be a non-negative function defined on the interval [0,1] . If int_0^xsqrt(1-(f^(prime)(t))^2)dt=int_0^xf(t)dt ,0lt=xlt=1,a n d \ f(0)=0 , then

If int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt , find the value of f(1).

If f(x)is integrable function in the interval [-a,a] then show that int_(-a)^(a)f(x)dx=int_(0)^(a)[f(x)+f(-x)]dx.

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt , then f((1)/(2)) is equal to

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then find the value of f(log_(e)2) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of int_(-2)^(2)f(x)dx is

If lim_(trarrx)(e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2), then find the value of f'(0).

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

CENGAGE PUBLICATION-DIFFERENTIAL EQUATIONS-All Questions
  1. If the eccentricity of the curve for which tangent at point P inter...

    Text Solution

    |

  2. If the solution of the differential equation (dy)/(dx)-y=1-e^(-x) and ...

    Text Solution

    |

  3. Let f be a function defined on the interval [0,2pi] such that int(0)^(...

    Text Solution

    |

  4. Let y(x) be a function satisfying d^(2)y//dx^(2)-dy//dx+e^(2x)=0,y(0)=...

    Text Solution

    |

  5. if the differential equation of a curve, passing through (0,-(pi)/(4))...

    Text Solution

    |

  6. Let f be a continuous function satisfying the equation int(0)^(x)f(t)d...

    Text Solution

    |

  7. The differential equaiotn which represents the family of curves y=C(1)...

    Text Solution

    |

  8. Solution of the following equation cos x dy =y(sinx-y)dx,0ltxlt(pi)/...

    Text Solution

    |

  9. Let I be the purchase value of an equipment and V(t) be the value afte...

    Text Solution

    |

  10. If (dy)/(dx)=y+3 and y(0)=2, then y(ln 2) is equal to

    Text Solution

    |

  11. A spherical balloon is filled with 4500p cubic meters of helium gas...

    Text Solution

    |

  12. The population p(t) at time t of a certain mouse species satisfies the...

    Text Solution

    |

  13. At present, a firm is manufacturing 2000 items. It is estimated tha...

    Text Solution

    |

  14. Let the population of rabbits surviving at a time t be governed by t...

    Text Solution

    |

  15. Let y(x) be the solution the differential equation (xlogx)(dy)/(dx)+y=...

    Text Solution

    |

  16. If a curve y=f(x) passes through the point (1,-1) and satisfies the di...

    Text Solution

    |

  17. If (2+sinx)(dy)/(dx)+(y+1)cosx=0 and y(0)=1, then y((pi)/(2)) is equal...

    Text Solution

    |

  18. Let y=g(x) be the solution of the differential equation sin (dy)/(dx...

    Text Solution

    |

  19. A curve passes through the point (1,pi/6) . Let the slope of the curve...

    Text Solution

    |

  20. The function y=f(x) is the solution of the differential equation (d...

    Text Solution

    |