Home
Class 12
MATHS
What is the fundamental period of f(x) ...

What is the fundamental period of `f(x) = (sin x+ sin 3x)/(cos x+ cos 3x)`

A

`pi//2`

B

`pi`

C

`2pi`

D

`3pi`

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)=(sinx+sin3x)/(cosx+cos3x)`
`=(2sin2xcosx)/(2cos2x cos3x)`
where `x ne (2n+1)(pi)/(4),(2n+1)(pi)/(2)`
`f(x+(pi)/(2))=tan2(x+(pi)/(2))=tan(2x+pi)=tan2x`
it seems that `(pi)/(2)` is a period but it is not because f(0) is defined where as `f((pi)/(2))` is not defined.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE PUBLICATION|Exercise DPP 3.4|8 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE PUBLICATION|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

cos 4x = sin 3x

(sin x + sin 3x )/( cos x + cos 3x )= tan 2x

sin3x + sinx = cos6x + cos4x

(sin 5x + sin 3x )/( cos 5x + cos 3x ) = tan 4x

int (cos x +2 sin x)/(3 cos x + 4 sin x)dx

If theta is the fundamental period of the function f(x) = sin^99 x+sin^99(x+(2pi)/3)+sin^99(x+(4pi)/3) , then the complex number z=|z|(cos theta+i sintheta) lies in the quadrant number.

int (sin x+ x cos x )/(x sin x)dx

(sin 3x + sin x ) sin x + (cos 3x - cos x) cos x =0

Show that the general solution of sin x- 3 sin 2x+sin 3x= cos x-3 cos 2x+ cos 3x " is " ( n pi)/(2)+ (pi)/(8) , where n is any integer.

Prove that = (sin 5x - 2 sin 3 x + sin x)/( cos 5x - cos x) = tan x