Home
Class 12
MATHS
Let f(x)=(ax + b )/(cx+d). Then the fof ...

Let `f(x)=(ax + b )/(cx+d)`. Then the `fof (x)=x`, provided that : `(a!=0, b!= 0, c!=0,d!=0)`

A

`d=-a`

B

`d=a`

C

`a=b=1`

D

`a=b=c=d=1,`

Text Solution

Verified by Experts

The correct Answer is:
A

`fof(x)=(a[(ax+b)/(cx+d)]+b)/(c[(ax+b)/(cx+d)]+d)=x`
`therefore" "(ac+dc)x^(2)+(bc+d^(2)-bc-a^(2))x-ab-bd=0`
It is true for all real x,
`therefore" "(ac+dc)x^(2)+(bc+d^(2)-bc-a^(2))x-ab-bd =0`
`"so "a=-d`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE PUBLICATION|Exercise DPP 3.4|8 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE PUBLICATION|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x^(3) + bx^(2) +cx +d, 0 lt b^(2) lt c . Then f(x)-

Let f(x) = (ax+b) cos x+ (cx+ d) sin x and f' (x) = x cos x be an identity in x then

If f(x) = ax + b and g(x) = cx + d, then f(g(x))=g(f(x)) implies

The solution of (dy)/(dx)=(a x+h)/(b y+k) represent a parabola when (a) (a) a=0,b!=0 (b) a!=0,b!=0 (c) b=0,a!=0 (d) a=0,b in R

Let f(x)=a x^2+b x+cdot Consider the following diagram. Then Fig c 0 a+b-c >0 a b c<0

Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) the minimum value of f(x) as b varies, the range of m(b) is (A) [0,1] (B) (0,1/2] (C) [1/2,1] (D) (0,1]

Let f(x)={1+(2x)/a ,0lt=x 1)f(x) exists ,then a is (a) 1 (b) -1 (c) 2 (d) -2

Let f(x) be a quadratic expression such that f(-1)+f(2)=0 . If one root of f(x)=0 is 3 , then the other root of f(x)=0 lies in (A) (-oo,-3) (B) (-3,oo) (C) (0,5) (D) (5,oo)

Let alpha,beta be the roots of the equation (x-a)(x-b)=c ,c!=0. Then the roots of the equation (x-alpha)(x-beta)+c=0 are a , c b. b , c c. a , b d. a+c , b+c

If f(x) is a twice differentiable function such that f(a)=0, f(b)=2, f(c)=-1,f(d)=2, f(e)=0 where a < b < c < de, then the minimum number of zeroes of g(x) = f'(x)^2+f''(x)f(x) in the interval [a, e] is