Home
Class 12
MATHS
If f(x) is an invertible function and g(...

If `f(x)` is an invertible function and `g(x)=2f(x)+5,` then the value of `g^(-1)(x)i s` (a)`2f^(-1)(x)-5` (b) `1/(2f^(-1)(x)+5)` `1/2f^(-1)(x)+5` (d) `f^(-1)((x-5)/2)`

A

`2f^(-1)(x)-5`

B

`(1)/(2f^(-1)(x)+5)`

C

`(1)/(2)f^(-1)(x)+5`

D

`f^(-1)((x-5)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
D

Given `g(x)=2f(x)+5`
Replacing x by `g^(-1)(x)`, we get
`g(g^(-1)(x))=2f(g^(-1)(x))+5`
`rArr" "x=2 f(g^(-1)(x))+5`
`rArr" "f(g^(-1)(x))=(x-5)/(2)`
`rArr" "f^(-1)(x)=f^(-1)((x-5)/(2))`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE PUBLICATION|Exercise DPP 3.4|8 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE PUBLICATION|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s (a) 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) (c) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

If the function f(x)=x^(3)+e^((x)/(2)) and g(x)=f^(-1)(x) , then the value of g'(1) is

If 3f(x) +2f (-x) =5 (x-2) then the value fo f(1) is-

If f(x) is a quadratic function and f(1) = 5,f(-1) = 11 and f(2) = 8, find the value of f(-2).

If f(x + 2) = 2x^2 + 5x + 7 , then the value of f(1)

2f(1/x) - f(x) = 5x , find the value of f(x + 1/x).

If g is the inverse of a function f and f(x)=1/(1+x^5) , Then g'(x) i equal to :

If g is the inverse of a function f and f'(x)=(1)/(1+x^(5)) , then g'(x) is equal to-

if 2f(x)+3f(-x)=x^2+x+1 find the value of f'(1)

If f(x) = [x] and g(x)=|x| the value of f(g(8/5))-g(f(-8/5)) is