Home
Class 12
MATHS
A function f: R -> R satisfy the equatio...

A function `f: R -> R` satisfy the equation `f (x)f(y) - f (xy)= x+y` for all `x, y in R` and `f(y) > 0`, then

A

`f(x)f^(-1)(x)=x^(2)-4`

B

`f(x)f^(-1)(x)=x^(2)-6`

C

`f(x)f^(-1)(x)=x^(2)-1`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Taking x = y = 1, we get
`f(1)f(1)-f(1)=2`
`rArr" "f^(2)(1)-f(1)-2=0`
`rArr" "(f(1)-2)(f(1)+1)=0`
`rArr" "f(1)=2`
Taking y = 1, we get
`f(x).f(1)-f(x)=x+1`
`rArr" "f(x)=x+1`
`rArr" "f^(-1)(x)=x-1`
`therefore" "f(x).f^(-1)(x)=x^(2)-1`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE PUBLICATION|Exercise DPP 3.4|8 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE PUBLICATION|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

A function f : R to R satisfies the equation f(x + y) = f(x), f(y) for all x, y in R , f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f' (0) = 2. Find (f'(x))/f(x)

A function f: R -> R satisfies the equation f(x)f(y)-f(x y)=x+yAAx ,y in Ra n df(1)>0 , then a. f(x)f^(-1)(x)=x^2-4 b. f(x)f^(-1)(x)=x^2-6 c. f(x)f^(-1)(x)=x^2-1 d. none of these

A function f: R->R satisfies the equation f(x+y)=f(x)f(y) for all x , y in R and f(x)!=0 for all x in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

A function f:R rarr R satisfies the equation f(x+y)=f(x)f(y) for all x,y in R , f(x) ne 0 . Suppose that the function is differentiable at x=0 and f'(0)=2. Prove that f'(x)=2f(x).

If the function f satisfies the relation f(x+y)+f(x-y)=2f(x)xxf(y), AA x, y, in R and f(0) ne 0 , then

If f is a real valued difrerentiable function satisfying | f (x) - f (y) | le (x -y) ^(2) for all, x,y in RR and f(0) =0, then f(1) is equal to-

The function f satisfies the relation f(x+y) =f(x) f(y) for all ral x, y and f(x) ne 0. If f(x) is differentiable at x=0 and f'(0) =2, then f'(x) is equal to-

If the function f satisfies the reation f(x+y)+f(x-y)=2f(x) f(y) Aax,yin RR and f(0) ne 0 then ____

A continuous function f(x)onR->R satisfies the relation f(x)+f(2x+y)+5x y=f(3x-y)+2x^2+1forAAx ,y in R Then find f(x)dot