Home
Class 12
MATHS
Let f be a function defined from R^(+)ra...

Let f be a function defined from `R^(+)rarrR^(+).` If `(f(xy))^(2)=x(f(y))^(2)` for all positive numbers x and y, If `f(2)=6,` find `f(50)`=?

A

20

B

30

C

5

D

40

Text Solution

Verified by Experts

The correct Answer is:
B

`(f(xy))^(2)=x(f(y))^(2) and f(2)=6`
Put x = 25 and y = 2
`(f(50))^(2)=25(f(2))^(2)=25xx36`
`therefore" "f(50)=30`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE PUBLICATION|Exercise DPP 3.4|8 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE PUBLICATION|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

Let f be a function satisfying of xdot Then f(x y)=(f(x))/y for all positive real numbers x and ydot If f(30)=20 , then find the value of f(40)dot

If f(x+y) = f(x) * f(y) for all real x and y and f(5)=2,f'(0) = 3 , find f'(5).

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

If f(x)f(y) = f(x) + f(y) + f(xy) -2 for all real values of x and y and f(2) = 5, find f(4) and f(1/4) .

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If underset(xrarr0)lim(f(x))/(x)=1, then The value of f(9) is

If f(x+y+z)=f(x) f(y) f(z) ne 0 for all x,y,z and f(2)=5, f'(0)=2, find f'(2).

If f(x+y+z)=f(x)f(y)f(z)ne0 , for all x, y, z and f(2)=4,f'(0)=3 , find f'(2) .

Let f be a function defined on [0,2]. Then find the domain of function g(x)=f(9x^2-1)

Let f((x+y)/2)=(f(x)+f(y))/2 for all real x and y. If f'(0) exists and equals-1 and f(0)=1, find f(2)

If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)