The product of `4a^(2),-6b^(2) and 3a^(2)b^(2)` is
A
`a^(2)b^(2)`
B
`13a^(4)b^(4)`
C
`-72a^(4)b^(4)`
D
`a^(4)b^(4)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the product of the expressions \(4a^2\), \(-6b^2\), and \(3a^2b^2\), we will multiply them step by step.
### Step 1: Write the expression
We start with the expression:
\[
4a^2 \times (-6b^2) \times (3a^2b^2)
\]
### Step 2: Multiply the coefficients
First, we multiply the numerical coefficients:
\[
4 \times (-6) \times 3
\]
Calculating this step-by-step:
- \(4 \times (-6) = -24\)
- Now, \(-24 \times 3 = -72\)
So, the product of the coefficients is \(-72\).
### Step 3: Multiply the \(a\) terms
Next, we multiply the \(a\) terms:
\[
a^2 \times a^2
\]
Using the property of exponents, we add the exponents:
\[
a^{2+2} = a^4
\]
### Step 4: Multiply the \(b\) terms
Now, we multiply the \(b\) terms:
\[
b^2 \times b^2
\]
Again, using the property of exponents:
\[
b^{2+2} = b^4
\]
### Step 5: Combine all parts
Now we combine all the parts together:
\[
-72 \times a^4 \times b^4 = -72a^4b^4
\]
### Final Answer
The product of \(4a^2\), \(-6b^2\), and \(3a^2b^2\) is:
\[
\boxed{-72a^4b^4}
\]
Topper's Solved these Questions
ALGEBRAIC EXPRESSIONS
S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-6 |1 Videos
ALGEBRAIC EXPRESSIONS
S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-7|1 Videos
ALGEBRIC IDENTITIES
S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
Similar Questions
Explore conceptually related problems
Find the product of 3ab^(2)and (4ab+3b^(2))
Find the products (2a^(2) b^(3)) xx (-3a^(3)b)
The value of the product (4a^(2)+3b)(9b^(2)+4a) at a=1, b=-2 is
The product (a+b)(a-b)(a^(2)-ab+b^(2))(a^(2)+ab+b^(2)) is equal to: a^(6)+b^(6)(b)a^(6)-b^(6)(c)a^(3)-b^(3)(d)a^(3)+b^(3)
Find each of the following products: (i) 5a^(2) b^(2) xx (3a^(2) - 4ab + 6b^(2)) (ii) (-3x^(2)y) xx (4x^(2) y - 3xy^(2) + 4x - 5y)
Find the product : (a^(2)+b^(2))(a^(4)+b^(4))(a+b)(a-b) .
Find the product ab(a^(2) + b^(2)) and evaluate it for a = 2 and b = 3.
Find the product (2a + 3b - 4c) (4a ^(2) + 9b ^(2) + 16 c ^(2) - 6 ab + 12 bc +8 ca)
In the product of (2x^(2)+4x+7)(ax^(2)-4x-b), the coeffiecient of x^(4) is 6 and that of x is 4 .Find a and b.
Find the product : (i) (a+2b+4c)(a^(2)+4b^(2)+16c^(2)-2ab-8bc-4ca) (ii) (3x-5y-4)(9x^(2)+25y^(2)+15xy+12x-20y+16) (iii) (2-3b-7c)(4+9b^(2)+49c^(2)+6b-21bc+14c) (iv) (sqrt(2)a+2sqrt(2)b+c)(2a^(2)+8b^(2)+c^(2)-4ab-2sqrt(2)bc-sqrt(2)ac)
S CHAND IIT JEE FOUNDATION-ALGEBRAIC EXPRESSIONS -SELF ASSESSMENT SHEET-17