Home
Class 7
MATHS
The product of 4a^(2),-6b^(2) and 3a^(2)...

The product of `4a^(2),-6b^(2) and 3a^(2)b^(2)` is

A

`a^(2)b^(2)`

B

`13a^(4)b^(4)`

C

`-72a^(4)b^(4)`

D

`a^(4)b^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of the expressions \(4a^2\), \(-6b^2\), and \(3a^2b^2\), we will multiply them step by step. ### Step 1: Write the expression We start with the expression: \[ 4a^2 \times (-6b^2) \times (3a^2b^2) \] ### Step 2: Multiply the coefficients First, we multiply the numerical coefficients: \[ 4 \times (-6) \times 3 \] Calculating this step-by-step: - \(4 \times (-6) = -24\) - Now, \(-24 \times 3 = -72\) So, the product of the coefficients is \(-72\). ### Step 3: Multiply the \(a\) terms Next, we multiply the \(a\) terms: \[ a^2 \times a^2 \] Using the property of exponents, we add the exponents: \[ a^{2+2} = a^4 \] ### Step 4: Multiply the \(b\) terms Now, we multiply the \(b\) terms: \[ b^2 \times b^2 \] Again, using the property of exponents: \[ b^{2+2} = b^4 \] ### Step 5: Combine all parts Now we combine all the parts together: \[ -72 \times a^4 \times b^4 = -72a^4b^4 \] ### Final Answer The product of \(4a^2\), \(-6b^2\), and \(3a^2b^2\) is: \[ \boxed{-72a^4b^4} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-6 |1 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-7|1 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos

Similar Questions

Explore conceptually related problems

Find the product of 3ab^(2)and (4ab+3b^(2))

Find the products (2a^(2) b^(3)) xx (-3a^(3)b)

The value of the product (4a^(2)+3b)(9b^(2)+4a) at a=1, b=-2 is

The product (a+b)(a-b)(a^(2)-ab+b^(2))(a^(2)+ab+b^(2)) is equal to: a^(6)+b^(6)(b)a^(6)-b^(6)(c)a^(3)-b^(3)(d)a^(3)+b^(3)

Find each of the following products: (i) 5a^(2) b^(2) xx (3a^(2) - 4ab + 6b^(2)) (ii) (-3x^(2)y) xx (4x^(2) y - 3xy^(2) + 4x - 5y)

Find the product : (a^(2)+b^(2))(a^(4)+b^(4))(a+b)(a-b) .

Find the product ab(a^(2) + b^(2)) and evaluate it for a = 2 and b = 3.

Find the product (2a + 3b - 4c) (4a ^(2) + 9b ^(2) + 16 c ^(2) - 6 ab + 12 bc +8 ca)

In the product of (2x^(2)+4x+7)(ax^(2)-4x-b), the coeffiecient of x^(4) is 6 and that of x is 4 .Find a and b.

Find the product : (i) (a+2b+4c)(a^(2)+4b^(2)+16c^(2)-2ab-8bc-4ca) (ii) (3x-5y-4)(9x^(2)+25y^(2)+15xy+12x-20y+16) (iii) (2-3b-7c)(4+9b^(2)+49c^(2)+6b-21bc+14c) (iv) (sqrt(2)a+2sqrt(2)b+c)(2a^(2)+8b^(2)+c^(2)-4ab-2sqrt(2)bc-sqrt(2)ac)