Home
Class 7
MATHS
(14x^(2)yz-28x^(2)y^(2)z^(3)+32y^(2)z^(2...

`(14x^(2)yz-28x^(2)y^(2)z^(3)+32y^(2)z^(2))div(-4xy)` is equal to

A

`(7)/(2)yz+7xyz^(2)+8xyz`

B

`-(7)/(2)xz+7xyz^(3)-(8yz^(2))/(x)`

C

`-(7)/(2)xz-7xyz^(3)+(8yz^(2))/(x)`

D

`(7)/(2)xz-7xyz^(2)-(8yz^(2))/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((14x^{2}yz - 28x^{2}y^{2}z^{3} + 32y^{2}z^{2}) \div (-4xy)\), we will divide each term in the numerator by \(-4xy\). ### Step 1: Divide the first term The first term is \(14x^{2}yz\). \[ \frac{14x^{2}yz}{-4xy} = \frac{14}{-4} \cdot \frac{x^{2}}{x} \cdot \frac{y}{y} \cdot z \] Calculating each part: - \(\frac{14}{-4} = -\frac{7}{2}\) - \(\frac{x^{2}}{x} = x^{1} = x\) - \(\frac{y}{y} = 1\) So, the first term simplifies to: \[ -\frac{7}{2}xz \] ### Step 2: Divide the second term The second term is \(-28x^{2}y^{2}z^{3}\). \[ \frac{-28x^{2}y^{2}z^{3}}{-4xy} = \frac{-28}{-4} \cdot \frac{x^{2}}{x} \cdot \frac{y^{2}}{y} \cdot z^{3} \] Calculating each part: - \(\frac{-28}{-4} = 7\) - \(\frac{x^{2}}{x} = x^{1} = x\) - \(\frac{y^{2}}{y} = y^{1} = y\) So, the second term simplifies to: \[ 7xyz^{2} \] ### Step 3: Divide the third term The third term is \(32y^{2}z^{2}\). \[ \frac{32y^{2}z^{2}}{-4xy} = \frac{32}{-4} \cdot \frac{y^{2}}{y} \cdot z^{2} \] Calculating each part: - \(\frac{32}{-4} = -8\) - \(\frac{y^{2}}{y} = y^{1} = y\) So, the third term simplifies to: \[ -8yz \] ### Final Result Now, we combine all the simplified terms: \[ -\frac{7}{2}xz + 7xyz^{2} - 8yz \] Thus, the expression \((14x^{2}yz - 28x^{2}y^{2}z^{3} + 32y^{2}z^{2}) \div (-4xy)\) is equal to: \[ -\frac{7}{2}xz + 7xyz^{2} - 8yz \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-6 |1 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-7|1 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos

Similar Questions

Explore conceptually related problems

(x-y-z)^(2)-(x^(2)+y^(2)+z^(2))=2(yz-zx-xy)

Prove that quad det ([yx-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]) is divisible by (x+y+z) and hence find the quotient.

yz-x^(2)quad zx-y^(2)quad xy-z^(2)| Prove that det[[yz-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]] is divisible by (x+y+z), and hence find the quotient.

Simplify: (x+y-2z)^(2)-x^(2)-y^(2)-3z^(2)+4xy

Add : x y ^(2) z ^(2)+ 3x ^(2) y ^(2) z - 4x ^(2)yz ^(2), - 9x ^(2) y ^(2) z + 3x y ^(2) z ^(2) + x ^(2) yz ^(2)

Express ((x^(3)+y^(3)+z^(3)-3xyz)/((x^(2)+y^(2)+z^(2)-xy-yz-zx))) in lowest terms