`(14x^(2)yz-28x^(2)y^(2)z^(3)+32y^(2)z^(2))div(-4xy)` is equal to
A
`(7)/(2)yz+7xyz^(2)+8xyz`
B
`-(7)/(2)xz+7xyz^(3)-(8yz^(2))/(x)`
C
`-(7)/(2)xz-7xyz^(3)+(8yz^(2))/(x)`
D
`(7)/(2)xz-7xyz^(2)-(8yz^(2))/(x)`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the expression \((14x^{2}yz - 28x^{2}y^{2}z^{3} + 32y^{2}z^{2}) \div (-4xy)\), we will divide each term in the numerator by \(-4xy\).
### Step 1: Divide the first term
The first term is \(14x^{2}yz\).
\[
\frac{14x^{2}yz}{-4xy} = \frac{14}{-4} \cdot \frac{x^{2}}{x} \cdot \frac{y}{y} \cdot z
\]
Calculating each part:
- \(\frac{14}{-4} = -\frac{7}{2}\)
- \(\frac{x^{2}}{x} = x^{1} = x\)
- \(\frac{y}{y} = 1\)
So, the first term simplifies to:
\[
-\frac{7}{2}xz
\]
### Step 2: Divide the second term
The second term is \(-28x^{2}y^{2}z^{3}\).
\[
\frac{-28x^{2}y^{2}z^{3}}{-4xy} = \frac{-28}{-4} \cdot \frac{x^{2}}{x} \cdot \frac{y^{2}}{y} \cdot z^{3}
\]
Calculating each part:
- \(\frac{-28}{-4} = 7\)
- \(\frac{x^{2}}{x} = x^{1} = x\)
- \(\frac{y^{2}}{y} = y^{1} = y\)
So, the second term simplifies to:
\[
7xyz^{2}
\]
### Step 3: Divide the third term
The third term is \(32y^{2}z^{2}\).
\[
\frac{32y^{2}z^{2}}{-4xy} = \frac{32}{-4} \cdot \frac{y^{2}}{y} \cdot z^{2}
\]
Calculating each part:
- \(\frac{32}{-4} = -8\)
- \(\frac{y^{2}}{y} = y^{1} = y\)
So, the third term simplifies to:
\[
-8yz
\]
### Final Result
Now, we combine all the simplified terms:
\[
-\frac{7}{2}xz + 7xyz^{2} - 8yz
\]
Thus, the expression \((14x^{2}yz - 28x^{2}y^{2}z^{3} + 32y^{2}z^{2}) \div (-4xy)\) is equal to:
\[
-\frac{7}{2}xz + 7xyz^{2} - 8yz
\]
Topper's Solved these Questions
ALGEBRAIC EXPRESSIONS
S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-6 |1 Videos
ALGEBRAIC EXPRESSIONS
S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-7|1 Videos
ALGEBRIC IDENTITIES
S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
Similar Questions
Explore conceptually related problems
(x-y-z)^(2)-(x^(2)+y^(2)+z^(2))=2(yz-zx-xy)
Prove that quad det ([yx-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]) is divisible by (x+y+z) and hence find the quotient.
yz-x^(2)quad zx-y^(2)quad xy-z^(2)| Prove that det[[yz-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]] is divisible by (x+y+z), and hence find the quotient.
Simplify: (x+y-2z)^(2)-x^(2)-y^(2)-3z^(2)+4xy
Add : x y ^(2) z ^(2)+ 3x ^(2) y ^(2) z - 4x ^(2)yz ^(2), - 9x ^(2) y ^(2) z + 3x y ^(2) z ^(2) + x ^(2) yz ^(2)
Express ((x^(3)+y^(3)+z^(3)-3xyz)/((x^(2)+y^(2)+z^(2)-xy-yz-zx))) in lowest terms
S CHAND IIT JEE FOUNDATION-ALGEBRAIC EXPRESSIONS -SELF ASSESSMENT SHEET-17