The product of `((1)/(5)x^(2)-(1)/(6)y^(2)) and (5x^(2)+6y^(2))` is
A
1
B
`x^(4)+(11)/(60)x^(2)y^(2)+y^(4)`
C
`x^(4)+(11)/(30)x^(2)y^(2)-y^(4)`
D
`x^(4)-(11)/(30)x^(2)y^(2)-y^(4)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the product of the expressions \(\left(\frac{1}{5}x^2 - \frac{1}{6}y^2\right)\) and \((5x^2 + 6y^2)\), we will follow these steps:
### Step 1: Distribute the first expression into the second expression
We will use the distributive property (also known as the FOIL method for binomials) to multiply the two expressions:
\[
\left(\frac{1}{5}x^2 - \frac{1}{6}y^2\right)(5x^2 + 6y^2) = \frac{1}{5}x^2(5x^2) + \frac{1}{5}x^2(6y^2) - \frac{1}{6}y^2(5x^2) - \frac{1}{6}y^2(6y^2)
\]
### Step 2: Calculate each term
Now we will calculate each term separately:
1. \(\frac{1}{5}x^2 \cdot 5x^2 = x^4\)
2. \(\frac{1}{5}x^2 \cdot 6y^2 = \frac{6}{5}x^2y^2\)
3. \(-\frac{1}{6}y^2 \cdot 5x^2 = -\frac{5}{6}x^2y^2\)
4. \(-\frac{1}{6}y^2 \cdot 6y^2 = -y^4\)
So, we have:
\[
x^4 + \frac{6}{5}x^2y^2 - \frac{5}{6}x^2y^2 - y^4
\]
### Step 3: Combine like terms
Next, we need to combine the like terms \(\frac{6}{5}x^2y^2\) and \(-\frac{5}{6}x^2y^2\). To do this, we need a common denominator.
The least common multiple of 5 and 6 is 30. We can rewrite the fractions:
\[
\frac{6}{5}x^2y^2 = \frac{36}{30}x^2y^2
\]
\[
-\frac{5}{6}x^2y^2 = -\frac{25}{30}x^2y^2
\]
Now, we can combine them:
\[
\frac{36}{30}x^2y^2 - \frac{25}{30}x^2y^2 = \frac{11}{30}x^2y^2
\]
### Step 4: Write the final expression
Now we can write the final expression by combining all the terms:
\[
x^4 + \frac{11}{30}x^2y^2 - y^4
\]
### Final Answer
Thus, the product of the given expressions is:
\[
x^4 + \frac{11}{30}x^2y^2 - y^4
\]
---
Topper's Solved these Questions
ALGEBRAIC EXPRESSIONS
S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-6 |1 Videos
ALGEBRAIC EXPRESSIONS
S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-7|1 Videos
ALGEBRIC IDENTITIES
S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
Similar Questions
Explore conceptually related problems
Find the products ((-7)/(5)x^(2)y)xx((3)/(2)xy^(2)) xx((-6)/(5)x^(3)y^(3))
Find the product of the binomials: ((1)/(2)x-(1)/(5)y)((1)/(2)x-(1)/(5)y)
Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)
The number of second degree terms in the expression 2x^(3)-3x^(2)y+5x^(2)-6y^(2)+8x^(2)y-4x^(2)y^(2) is _____
2x^(2)+6xy+5y^(2)=1, then
If x= (sqrt""5) + 1 and y = (sqrt""5) -1 , then what is the value of (x^(2)//y^(2)) + (y^(2)//x^(2)) + 4[(x//y) + (y//x)]+6 ?
Find the products: (2x+y)(2x-y)(4x^(2)+y^(2)(x-(y)/(5)-1)(x+(y)/(5)+1)
S CHAND IIT JEE FOUNDATION-ALGEBRAIC EXPRESSIONS -SELF ASSESSMENT SHEET-17