Home
Class 7
MATHS
The product of ((1)/(5)x^(2)-(1)/(6)y^(2...

The product of `((1)/(5)x^(2)-(1)/(6)y^(2)) and (5x^(2)+6y^(2))` is

A

1

B

`x^(4)+(11)/(60)x^(2)y^(2)+y^(4)`

C

`x^(4)+(11)/(30)x^(2)y^(2)-y^(4)`

D

`x^(4)-(11)/(30)x^(2)y^(2)-y^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of the expressions \(\left(\frac{1}{5}x^2 - \frac{1}{6}y^2\right)\) and \((5x^2 + 6y^2)\), we will follow these steps: ### Step 1: Distribute the first expression into the second expression We will use the distributive property (also known as the FOIL method for binomials) to multiply the two expressions: \[ \left(\frac{1}{5}x^2 - \frac{1}{6}y^2\right)(5x^2 + 6y^2) = \frac{1}{5}x^2(5x^2) + \frac{1}{5}x^2(6y^2) - \frac{1}{6}y^2(5x^2) - \frac{1}{6}y^2(6y^2) \] ### Step 2: Calculate each term Now we will calculate each term separately: 1. \(\frac{1}{5}x^2 \cdot 5x^2 = x^4\) 2. \(\frac{1}{5}x^2 \cdot 6y^2 = \frac{6}{5}x^2y^2\) 3. \(-\frac{1}{6}y^2 \cdot 5x^2 = -\frac{5}{6}x^2y^2\) 4. \(-\frac{1}{6}y^2 \cdot 6y^2 = -y^4\) So, we have: \[ x^4 + \frac{6}{5}x^2y^2 - \frac{5}{6}x^2y^2 - y^4 \] ### Step 3: Combine like terms Next, we need to combine the like terms \(\frac{6}{5}x^2y^2\) and \(-\frac{5}{6}x^2y^2\). To do this, we need a common denominator. The least common multiple of 5 and 6 is 30. We can rewrite the fractions: \[ \frac{6}{5}x^2y^2 = \frac{36}{30}x^2y^2 \] \[ -\frac{5}{6}x^2y^2 = -\frac{25}{30}x^2y^2 \] Now, we can combine them: \[ \frac{36}{30}x^2y^2 - \frac{25}{30}x^2y^2 = \frac{11}{30}x^2y^2 \] ### Step 4: Write the final expression Now we can write the final expression by combining all the terms: \[ x^4 + \frac{11}{30}x^2y^2 - y^4 \] ### Final Answer Thus, the product of the given expressions is: \[ x^4 + \frac{11}{30}x^2y^2 - y^4 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-6 |1 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-7|1 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos

Similar Questions

Explore conceptually related problems

Find the products ((-7)/(5)x^(2)y)xx((3)/(2)xy^(2)) xx((-6)/(5)x^(3)y^(3))

Find the product of the binomials: ((1)/(2)x-(1)/(5)y)((1)/(2)x-(1)/(5)y)

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

The number of second degree terms in the expression 2x^(3)-3x^(2)y+5x^(2)-6y^(2)+8x^(2)y-4x^(2)y^(2) is _____

2x^(2)+6xy+5y^(2)=1, then

If x= (sqrt""5) + 1 and y = (sqrt""5) -1 , then what is the value of (x^(2)//y^(2)) + (y^(2)//x^(2)) + 4[(x//y) + (y//x)]+6 ?

Find the products: (2x+y)(2x-y)(4x^(2)+y^(2)(x-(y)/(5)-1)(x+(y)/(5)+1)