Home
Class 7
MATHS
Find the product : (a^(2)+b^(2))(a^(4)+b...

Find the product : `(a^(2)+b^(2))(a^(4)+b^(4))(a+b)(a-b)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the product \((a^{2}+b^{2})(a^{4}+b^{4})(a+b)(a-b)\), we can follow these steps: ### Step 1: Recognize the identities We will use the algebraic identities: 1. \( (a+b)(a-b) = a^2 - b^2 \) 2. \( a^4 + b^4 = (a^2 + b^2)^2 - (ab)^2 \) ### Step 2: Simplify \((a+b)(a-b)\) Using the first identity: \[ (a+b)(a-b) = a^2 - b^2 \] ### Step 3: Substitute back into the product Now, we can rewrite the original expression: \[ (a^{2}+b^{2})(a^{4}+b^{4})(a+b)(a-b) = (a^{2}+b^{2})(a^{4}+b^{4})(a^2 - b^2) \] ### Step 4: Simplify \(a^{4}+b^{4}\) Using the second identity: \[ a^4 + b^4 = (a^2 + b^2)^2 - (ab)^2 \] ### Step 5: Substitute \(a^4 + b^4\) into the expression Now substitute this back into our expression: \[ = (a^{2}+b^{2})((a^{2}+b^{2})^2 - (ab)^2)(a^2 - b^2) \] ### Step 6: Let \(x = a^2 + b^2\) Let \(x = a^2 + b^2\). Then the expression becomes: \[ = x(x^2 - (ab)^2)(a^2 - b^2) \] ### Step 7: Expand the expression Now we can expand: \[ = x(a^2 - b^2)(x^2 - (ab)^2) \] ### Step 8: Final expression The final expression can be simplified further, but the product can be expressed as: \[ = (a^2 + b^2)(a^2 - b^2)((a^2 + b^2)^2 - (ab)^2) \] ### Conclusion Thus, the product \((a^{2}+b^{2})(a^{4}+b^{4})(a+b)(a-b)\) simplifies to: \[ = (a^2 + b^2)(a^2 - b^2)((a^2 + b^2)^2 - (ab)^2) \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank-7|40 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

Find the products (2a^(2) b^(3)) xx (-3a^(3)b)

Find the product of 3ab^(2)and (4ab+3b^(2))

Simplify : (a+b)(a^(2)+b^(2))(a^(4)+b^(4))(a-b)

The product of 4a^(2),-6b^(2) and 3a^(2)b^(2) is

Find the product of (2a+b)times(a+2b)

Find the products ((-3)/(4)ab^(3)) xx((-2)/(3)a^(2)b^(4))

Find the product: (2a-3b-2c)(4a^(2)+9b^(2)+4c^(2)+6ab-6bc+4ca)

Find the product (2a-3b-2c)(4a^(2)+9b^(2)+4c^(2)+6ab-6bc+4ca) .

Find the value of the products: (4a^(2)+3b)(4a^(2)+3b)ata=1,b=2