Home
Class 7
MATHS
If a^(2)+1/(a^(2))=7, find the value of ...

If `a^(2)+1/(a^(2))=7`, find the value of
`(a^(2)-1/(a^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 - \frac{1}{a^2} \) given that \( a^2 + \frac{1}{a^2} = 7 \). ### Step 1: Start with the given equation We have: \[ a^2 + \frac{1}{a^2} = 7 \] ### Step 2: Square both sides We will square both sides of the equation to use the identity: \[ \left( a^2 + \frac{1}{a^2} \right)^2 = 7^2 \] This expands to: \[ a^4 + 2 + \frac{1}{a^4} = 49 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \( a^4 + \frac{1}{a^4} \): \[ a^4 + \frac{1}{a^4} = 49 - 2 \] \[ a^4 + \frac{1}{a^4} = 47 \] ### Step 4: Use the identity for \( a^2 - \frac{1}{a^2} \) We know that: \[ a^2 - \frac{1}{a^2} = \sqrt{(a^2 + \frac{1}{a^2})^2 - 4} \] Substituting the value we have: \[ a^2 - \frac{1}{a^2} = \sqrt{(7)^2 - 4} \] \[ = \sqrt{49 - 4} \] \[ = \sqrt{45} \] ### Step 5: Simplify the square root We can simplify \( \sqrt{45} \): \[ \sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5} \] ### Final Answer Thus, the value of \( a^2 - \frac{1}{a^2} \) is: \[ \boxed{3\sqrt{5}} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank-7|40 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+1/(a^(2))=7 , find the value of (a+1/(a))

If a^(2)+1/(a^(2))=7 , find the value of (a-1/(a))

If a^(2)+(1)/(a^(2))=23, find the value of (a+(1)/(a))

If a^(2)+(1)/(a^(2))=102, find the value of a-(1)/(a)

If x^(2)+(1)/(x^(2))=7, find the value of x^(3)+(1)/(x^(3))

If n^(2)+(1)/(n^(2))=7 .Find the value of n+(1)/(n)

If x-(1)/(x)=7 ,find the value of (x^(2)+(1)/(x^(2))) .

If x^(2)+(1)/(x^(2))=7; find the value x^(3)-(1)/(x^(3))

Find the value of (-2)^6, (-1)^7

If x^2 + 1/x^2 = 7 , find the value of x + 1/x