Home
Class 7
MATHS
If (x+1/(x))^(2)=3, show that x^(3)+1/(x...

If `(x+1/(x))^(2)=3`, show that `x^(3)+1/(x^(3))=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \left(x + \frac{1}{x}\right)^2 = 3 \] ### Step 1: Simplify the equation First, we take the square root of both sides: \[ x + \frac{1}{x} = \sqrt{3} \quad \text{or} \quad x + \frac{1}{x} = -\sqrt{3} \] ### Step 2: Cube the expression Next, we will cube the expression \(x + \frac{1}{x}\): \[ \left(x + \frac{1}{x}\right)^3 = x^3 + \frac{1}{x^3} + 3\left(x + \frac{1}{x}\right) \] ### Step 3: Substitute the value Now, we substitute \(x + \frac{1}{x} = \sqrt{3}\) into the cubed expression: \[ \left(\sqrt{3}\right)^3 = x^3 + \frac{1}{x^3} + 3\sqrt{3} \] Calculating \(\left(\sqrt{3}\right)^3\): \[ 3\sqrt{3} = x^3 + \frac{1}{x^3} + 3\sqrt{3} \] ### Step 4: Rearrange the equation Now, we can rearrange the equation to isolate \(x^3 + \frac{1}{x^3}\): \[ x^3 + \frac{1}{x^3} = 3\sqrt{3} - 3\sqrt{3} \] This simplifies to: \[ x^3 + \frac{1}{x^3} = 0 \] ### Conclusion Thus, we have shown that: \[ x^3 + \frac{1}{x^3} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank-7|40 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=p then show that x^(3)+(1)/(x^(3))=p^(3)-3p

If x=2^((1)/(3))+2^((2)/(3)) show that x^(3)-6x=6

If f(x)=x^(3)-(1)/(x^(3)), show that f(x)+f((1)/(x))=0

If x=1+sqrt(2) ,then show that : (x-(1)/(x))^(3)=8

If f(x)=x^(3)-(1)/(x^(3)) show that f(x)+f((1)/(x))=0

f(x)=(2x+3)/(3x+2), then show that f(x)*f((1)/(x))=1. if f(x)=4, then show that f(x+1)-f(x)=f(x)

If f(x)=(1+x)/(1-x), show that: f(2x)=(3f(x)-1)/(3-f(x)) .

If x=(4+sqrt(15))^(1//3)+(4-sqrt(15))^(1//3) , then show that x^(3)-3x-8=0 .