Home
Class 7
MATHS
If a^(2)+b^(2)+c^(2)=50andab+bc+ca=47, f...

If `a^(2)+b^(2)+c^(2)=50andab+bc+ca=47`, find the value of `a+b+c`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a + b + c \) given the equations \( a^2 + b^2 + c^2 = 50 \) and \( ab + bc + ca = 47 \), we can use the algebraic identity: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] ### Step-by-Step Solution: 1. **Write down the identity:** \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] 2. **Substitute the known values:** We know that \( a^2 + b^2 + c^2 = 50 \) and \( ab + bc + ca = 47 \). Substitute these values into the identity: \[ (a + b + c)^2 = 50 + 2 \times 47 \] 3. **Calculate \( 2 \times 47 \):** \[ 2 \times 47 = 94 \] 4. **Add the values:** \[ (a + b + c)^2 = 50 + 94 = 144 \] 5. **Take the square root:** To find \( a + b + c \), take the square root of both sides: \[ a + b + c = \sqrt{144} \] 6. **Calculate the square root:** \[ \sqrt{144} = 12 \] Thus, the value of \( a + b + c \) is \( 12 \). ### Final Answer: \[ a + b + c = 12 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank-7|40 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)+c^(2)=16 and ab+bc+ca=10 find the value of a+b+c

If a^(2)+b^(2)+c^(2)=19 and ab+bc+ca=3 Find the value of a+b+c

For real a, b and c if a^(2) + b^(2) + c^(2) = ab + bc + ca , then find the value of (a + b + c)^(2) A. 9a^(2) B. 81 a^(2) C. 27 a^(2) D. 24 a^(2)

If a^(2)+b^(2)+c^(2)=250 and ab+bc+ca=3 find a+b+c

If a^(2)+b^(2)+c^(2)=250 and ab+bc+ca=3 find a+b+c

If a^(2)+b^(2)+c^(2)=250 and ab+bc+ca = 3 , find a+b+c .

If a^(2)+b^(2)+c^(2)=154 and ab+bc + ca=-5 , find a+b+c.

If a^2+b^2+c^2 = 25 and a+b+c=7 , then find the value of ab+bc+ca .