Home
Class 7
MATHS
Find the value of a^(3)+b^(3)+c^(3)-3abc...

Find the value of `a^(3)+b^(3)+c^(3)-3abc`
if `a+b+c=8` and `ab+bc+ca=19`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^3 + b^3 + c^3 - 3abc \) given that \( a + b + c = 8 \) and \( ab + bc + ca = 19 \), we can use the algebraic identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] ### Step-by-Step Solution: 1. **Identify the given values**: - \( a + b + c = 8 \) - \( ab + ac + bc = 19 \) 2. **Find \( a^2 + b^2 + c^2 \)** using the identity: \[ a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc) \] Substitute the known values: \[ a^2 + b^2 + c^2 = 8^2 - 2 \times 19 \] \[ = 64 - 38 = 26 \] 3. **Calculate \( a^2 + b^2 + c^2 - ab - ac - bc \)**: \[ a^2 + b^2 + c^2 - ab - ac - bc = 26 - 19 = 7 \] 4. **Substitute back into the identity**: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] \[ = 8 \times 7 = 56 \] ### Final Answer: Thus, the value of \( a^3 + b^3 + c^3 - 3abc \) is \( \boxed{56} \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank-7|40 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

Find the value of a^(3)+b^(3)+c^(3)-3abc if 1) a+b+c=8,ab+bc+ca=19 2) a+b+c=5,a^(2)+b^(2)+c^(2)=11

Find the value of a^3 + b^3 + c^3 - 3abc if a + b + c = 12 and ab + bc + ca = 47 .

Find the value of a^3+b^3+c^3-3abc if a+b+c=12 and ab +bc +ca=47.

If a= 5, b= 4, c=8 then find the value of (a^(3) + b^(3) + c^(3)-3abc)//(ab+ bc+ ca- a^(2) -b^(2)-c^(2)) A 15 B 17 C -17 D -15

If a+b+c = 4 and ab + bc + ca = 1, then the value of a^3+b^3+c^3-3abc is: यदि a+b+c = 4 और ab + bc + ca = 1 है, तो a^3+b^3+c^3-3abc का मान क्या होगा ?

If a+b+c=6 and ab+bc+ca=10 then the value of a^(3)+b^(3)+c^(3)-3abc is (a) 36 (b) 48( c) 42 (d) 40

If a+b+c = 9 and ab+bc+ca = -22, then the value of a^3+b^3+c^3-3abc is : यदि a+b+c = 9 तथा ab+bc+ca = -22 है, तो a^3+b^3+c^3-3abc का मान क्या होगा ?

Find the HC.F of a^(3)+b^(3)+c^(3)-3abc and (a+b+c)^(3), given that ab+bc+ca=0