Home
Class 7
MATHS
(mx-ny)(mx-ny)=...

`(mx-ny)(mx-ny)=` ____

A

`m^(2)x^(2)+2mxny-n^(2)y^(2)`

B

`m^(2)x^(2)-2mxny-n^(2)y^(2)`

C

`m^(2)x^(2)-2mxny+n^(2)y^(2)`

D

`m^(2)x^(2)+2mxny+n^(2)y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((mx - ny)(mx - ny)\), we can use the algebraic identity for the square of a binomial. The identity states that: \[ (a - b)^2 = a^2 - 2ab + b^2 \] In our case, we can identify: - \(a = mx\) - \(b = ny\) Now, we can apply this identity step by step: 1. **Identify \(a\) and \(b\)**: - Here, \(a = mx\) and \(b = ny\). 2. **Apply the identity**: - According to the identity, we have: \[ (mx - ny)^2 = (mx)^2 - 2(mx)(ny) + (ny)^2 \] 3. **Calculate each term**: - The first term is \((mx)^2 = m^2x^2\). - The second term is \(-2(mx)(ny) = -2mnyx\). - The third term is \((ny)^2 = n^2y^2\). 4. **Combine the terms**: - Putting it all together, we get: \[ (mx - ny)^2 = m^2x^2 - 2mnyx + n^2y^2 \] Thus, the final answer is: \[ (m x - n y)(m x - n y) = m^2x^2 - 2mnyx + n^2y^2 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

int_( then K,P=)^( If )(1)/(ae^(mx)+be^(-mx))dx=K tan^(-1)(Pe^(mx))+C

If y=ae^(mx)+be^(-mx)," then "y_(2)=

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

int(1)/((1+e^(mx))(1+e^(-mx)))dx=

y=ae^(mx)+b^(-mx) satisfies which of the following differential equation?

y=ae^(mx)+be^(-mx) satisfies which of the following differential equations?

If y=ae^(mx)+be^(-mx) then (d^(2)y)/(dx^(2)) is

The coordinates of the point which divides the line segment joining the points (x_1;y_1) and (x_2;y_2) internally in the ratio m:n are given by (x=(mx_2+nx_1)/(m+n);y=(my_2+ny_1)/(m+n))