Home
Class 7
MATHS
(5z^(6)+1/(z^(6)))^(2)=...

`(5z^(6)+1/(z^(6)))^(2)=` ____

A

`5z^(8)+10z^(6)+1/(z^(8))`

B

`25z^(12)+10z^(6)+1/(z^(12))`

C

`25z^(12)+10+1/(z^(12))`

D

`5z^(8)+10+1/(z^(8))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((5z^{6} + \frac{1}{z^{6}})^{2}\), we can use the algebraic identity for the square of a binomial, which states: \[ (A + B)^{2} = A^{2} + B^{2} + 2AB \] ### Step-by-Step Solution: 1. **Identify A and B**: - Let \(A = 5z^{6}\) and \(B = \frac{1}{z^{6}}\). 2. **Apply the identity**: - Using the identity, we can expand \((A + B)^{2}\): \[ (5z^{6} + \frac{1}{z^{6}})^{2} = (5z^{6})^{2} + \left(\frac{1}{z^{6}}\right)^{2} + 2(5z^{6})(\frac{1}{z^{6}}) \] 3. **Calculate \(A^{2}\)**: - \((5z^{6})^{2} = 25z^{12}\) 4. **Calculate \(B^{2}\)**: - \(\left(\frac{1}{z^{6}}\right)^{2} = \frac{1}{z^{12}}\) 5. **Calculate \(2AB\)**: - \(2(5z^{6})(\frac{1}{z^{6}}) = 2 \cdot 5 = 10\) 6. **Combine all parts**: - Now, we can combine all the parts together: \[ (5z^{6} + \frac{1}{z^{6}})^{2} = 25z^{12} + \frac{1}{z^{12}} + 10 \] ### Final Answer: \[ (5z^{6} + \frac{1}{z^{6}})^{2} = 25z^{12} + \frac{1}{z^{12}} + 10 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

If z^(2)+z+1=0 where z is a complex number, then the value of (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+...+(z^(6)+(1)/(z^(6)))^(2) is

If z^(2)+z+1=0, then sum_(r=1)^(6)(z^(r)+z^(-r))^(2) is

Let |{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)z^(6)(x^(3)-z^(3)),,x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),,xz^(3)(z^(6)-x^(6)) ,,xy^(2)(x^(6)-y^(6))),(y^(2)^(3)(z^(3)-y^(3)),,xz^(3)(x^(3)-z^(3)),,xy^(2)(y^(3)-x^(3))):}| " and " Delta_(2)= |{:(x,,y^(2),,z^(3)),(x^(4),,y^(5) ,,z^(6)),(x^(7),,y^(8),,z^(9)):}| .Then Delta_(1)Delta_(2) is equal to

If z satisfies z-(1)/(z)=2i sin5^(@) and z^(6)+(1)/(z^(6))=2i sin theta then [|cot theta|] is equal to (where I.] denotes the greater integer function)

Z_(1), Z_(2),......,Z_(6) are non-zero complex number such that (Z_(1))/(Z_(2))+(Z_(3))/(Z_(4))+(Z_(5))/(Z_(6))=a+bi, where a,b real and (Z_(2))/(Z_(1))+(Z_(4))/(Z_(3))+(Z_(6))/(Z_(5))=0 then ((Z_(2))/(Z_(2)))^(2)+((Z_(3))/(Z_(4)))^(2)+((Z_(5))/(Z_(6)))^(2) =

Let z_(1),z_(2),z_(3),z_(4),z_(5) and z_(6) are complex numbers lying on a unit circle with centre (0,0) . If omega=(sum_(k=1)^(6)z_(k))(sum_(k=1)^(6)(1)/(z_(k))), then

If z=e^((2pi i)/5) , then 1+z+z^(2)+z^(3)+5z^(4)+4z^(5)+4z^(6)+4z^(7)+4z^(8)+5z^(9)=

If |z_(1)+z_(2)|^(2) = |z_(1)|^(2) +|z_(2)|^(2) " the " 6/pi amp (z_(1)/z_(2)) is equal to ……

Let z_(1)=6+i&z_(2)=4-3i Let z be a a complex number such that arg((z-z_(1))/(z-z_(2)))=(pi)/(2) then z satisfies