Home
Class 7
MATHS
(z^(2)+13)(z^(2)-5)=...

`(z^(2)+13)(z^(2)-5)=` ____

A

`2z^(4)+18z^(2)-8`

B

`z^(4)+8z^(2)-65`

C

`z^(4)-8z^(2)-65`

D

`z^(4)+8z^(2)+65`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((z^{2}+13)(z^{2}-5)\), we will use the distributive property (also known as the FOIL method for binomials). Let's break it down step by step. ### Step-by-Step Solution: 1. **Write the expression**: \[ (z^{2}+13)(z^{2}-5) \] 2. **Distribute each term in the first bracket with each term in the second bracket**: - Multiply \(z^{2}\) by \(z^{2}\): \[ z^{2} \cdot z^{2} = z^{4} \] - Multiply \(z^{2}\) by \(-5\): \[ z^{2} \cdot (-5) = -5z^{2} \] - Multiply \(13\) by \(z^{2}\): \[ 13 \cdot z^{2} = 13z^{2} \] - Multiply \(13\) by \(-5\): \[ 13 \cdot (-5) = -65 \] 3. **Combine all the results**: \[ z^{4} - 5z^{2} + 13z^{2} - 65 \] 4. **Combine like terms**: - Combine \(-5z^{2}\) and \(13z^{2}\): \[ -5z^{2} + 13z^{2} = 8z^{2} \] - So, the expression simplifies to: \[ z^{4} + 8z^{2} - 65 \] 5. **Final result**: \[ (z^{2}+13)(z^{2}-5) = z^{4} + 8z^{2} - 65 \] ### Final Answer: \[ (z^{2}+13)(z^{2}-5) = z^{4} + 8z^{2} - 65 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

(z+5)^(2)=z^(2)+25

(5z^(6)+1/(z^(6)))^(2)= ____

Simplify combining like terms: -z^(2) +13z^(2) - 5z + 7z^(3) -15z

The sum of the distinct real roots of polynomial 72-36z-26z^(2)+13z^(3)+2z^(4)-z^(5)=0 will be

If z+(1)/(z)=1 and a=z^(2005)+(1)/(z^(2005)) and bis last digit of the number 2^(2^(n))-1 when the integer n>1 and a^(2)+b^(2)=13 lambda then lambda=..........

Given z is a complex number z^(2)-z-|z|^(2)+(64)/(|z|^(5))=0 and Re(z)!=(1)/(2) Then |z| is less than :

If z_(1) and z_(2) are two complex numbers,then (A) 2(|z|^(2)+|z_(2)|^(2)) = |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) (B) |z_(1)+sqrt(z_(1)^(2)-z_(2)^(2))|+|z_(1)-sqrt(z_(1)^(2)-z_(2)^(2))| = |z_(1)+z_(2)|+|z_(1)-z_(2)| (C) |(z_(1)+z_(2))/(2)+sqrt(z_(1)z_(2))|+|(z_(1)+z_(2))/(2)-sqrt(z_(1)z_(2))|=|z_(1)|+|z_(2)| (D) |z_(1)+z_(2)|^(2)-|z_(1)-z_(2)|^(2) = 2(z_(1)bar(z)_(2)+bar(z)_(1)z_(2))

If z_(1),z_(2)inC,z_(1)^(2)+z_(2)^(2)inR,z_(1)(z_(1)^(2)-3z_(2)^(2))=2 and z_(2)(3z_(1)^(2)-z_(2)^(2))=11, the value of z_(1)^(2)+z_(2)^(2) is

int(3z^(3)-8z+5)/(sqrt(z^(2)-4z-7))dz=(z^(2)+az+36)sqrt(z^(2)-4z-7)+b ln|z-2+sqrt(z^(2)-4z-7)| where a,b in I and C is integretion constant,then