Home
Class 7
MATHS
x^(2)+1/(x^(2))=...

`x^(2)+1/(x^(2))=` ____

A

`(x+1/(x))^(2)-2`

B

`(x+1/(x))^(2)+2`

C

`(x-1/(x))^(2)-2`

D

`(x-1/(x))^(2)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + \frac{1}{x^2} \), we can use the identity related to the square of a binomial. Here’s the step-by-step solution: ### Step 1: Use the identity We know that: \[ \left( x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2} \] From this, we can express \( x^2 + \frac{1}{x^2} \) as: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] ### Step 2: Substitute \( a = x + \frac{1}{x} \) Let \( a = x + \frac{1}{x} \). Then we can rewrite the equation as: \[ x^2 + \frac{1}{x^2} = a^2 - 2 \] ### Step 3: Final expression Thus, we have: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] ### Conclusion So, the expression \( x^2 + \frac{1}{x^2} \) can be represented as: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

If y=(x^(2)+x+1)/(x^(2)-x+1)," then "(x^(2)-x+1)^(2)y_(1)=

lim_(x rarr1)((2x^(2)-x-1)/(x^(2)+x-2))=?

|[(x-2)^(2), (x-1)^(2), x^(2)], [(x-1)^(2), x^(2), (x+1)^(2)],[x^(2), (x+1)^(2), (x+2)^(2)]|+P^(3)=0 the value of P is

(x^(2))/((x+1)^(2))+((x+1)^(2))/(x^(2))-(x)/(x+1)+(x+1)/(x)-(7)/(4)=p^(2)

(x^(2)+x+1)/((x+1)^(2)(x+2))

If sec theta+tan theta=x, then tan theta=(x^(2)+1)/(x) (b) (x^(2)-1)/(x)( c) (x^(2)+1)/(2x) (d) (x^(2)-1)/(2x)

If sec theta+tan theta=x, then sec theta=(a)(x^(2)+1)/(x) (b) (x^(2)+1)/(2x)(c)(x^(2)-1)/(2x) (d) (x^(2)-1)/(x)

(x-2)^(2),(x-1)^(2),x^(2)(x-1)^(2),x^(2),(x+1)^(2)x^(2),(x+1)^(2),(x+2)^(2)]|=-8

(x-2)^(2),(x-1)^(2),x^(2)(x-1)^(2),x^(2),(x+1)^(2)x^(2),(x+1)^(2),(x+2)^(2)]|=

int((1-x^(-2))/(x^(1/2)-x^(-1/2))-(2)/(x^(3/2))+(x^(-2)-x)/(x^(1/2)-x^(-1/2)))dx