Home
Class 7
MATHS
(2/(5)ab+c)(2/(5)ab-c)=...

`(2/(5)ab+c)(2/(5)ab-c)=` ____

A

`4/(25)a^(2)b^(2)-4/(5)abc+c^(2)`

B

`4/(25)a^(2)b^(2)+4/(5)abc+c^(2)`

C

`4/(25)a^(2)b^(2)-c^(2)`

D

`4/(25)a^(2)b^(2)+c^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{2}{5}ab + c)(\frac{2}{5}ab - c)\), we can use the algebraic identity for the difference of squares, which states: \[ (a + b)(a - b) = a^2 - b^2 \] ### Step-by-step Solution: 1. **Identify \(a\) and \(b\)**: - Here, we can identify: - \(a = \frac{2}{5}ab\) - \(b = c\) 2. **Apply the identity**: - According to the difference of squares identity: \[ (\frac{2}{5}ab + c)(\frac{2}{5}ab - c) = a^2 - b^2 \] - Substitute \(a\) and \(b\) into the identity: \[ = \left(\frac{2}{5}ab\right)^2 - c^2 \] 3. **Calculate \(a^2\)**: - Calculate \(\left(\frac{2}{5}ab\right)^2\): \[ = \frac{2^2}{5^2}(ab)^2 = \frac{4}{25}a^2b^2 \] 4. **Combine the results**: - Now, substitute back into the equation: \[ = \frac{4}{25}a^2b^2 - c^2 \] 5. **Final Result**: - Therefore, the final expression is: \[ \frac{4}{25}a^2b^2 - c^2 \] ### Final Answer: \[ \frac{4}{25}a^2b^2 - c^2 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+px+1 is a factor of ax^(3)+bx+c then a a^(2)+c^(2)=-ab b) a^(2)+c^(2)ab c) a^(2)-c^(2)=ab d a^(2)-c^(2)=-ab

Suppose a, b, c are three vectors such that abs(a)=abs(b)=abs(c)=1" and "a+b+c=0," then "abs(a-b)^(2)+abs(b-c)^(2)+abs(c-a)^(2)= _______

The area of a parallelogram formed by the lines ax+-by+-c=0 is (a) (c^(2))/((ab)) (b) (2c^(2))/((ab)) (c) (c^(2))/(2ab)( d) none of these

Suppose a, b, c are three unit vectors such that " "abs(a-b)^(2)+abs(b-c)^(2)+abs(c-a)^(2)=9 , then abs(2a+7b+7c)= ___________

If x^(2)+px=1 is a factor of the expression ax^(3)+bx=c, then a^(2)-c^(2)=ab b.a^(2)+c^(2)=-ab c.a^(2)-c^(2)=-ab d.none of these

Multiply: (i) 6ab by 4b (ii) 5ab^(2)c^(3) by 7a^(2)bc (iii) -6x^(2)yz by (2)/(3)xy^(3)z^(2) (iv) (-8)/(5)a^(2)bc^(3) by (-3)/(4)ab^(2)c

Let a be vector, such that abs(a)=5 . Then abs(a*i)^(2)+abs(a*j)^(2)+abs(a*k)^(2)= ________

Find the products ((-13)/(5)ab^(2)c)xx((7)/(3)a^(2)bc^(2))