Home
Class 7
MATHS
(x+4)(x-4)(x^(2)+16)=...

`(x+4)(x-4)(x^(2)+16)=` ____

A

`x^(2)-64`

B

`x^(4)-64`

C

`x^(4)-256`

D

`x^(2)-256`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((x+4)(x-4)(x^2+16)\), we can follow these steps: ### Step 1: Use the Difference of Squares Identity The first part of the expression is \((x+4)(x-4)\). We can use the algebraic identity for the difference of squares: \[ a^2 - b^2 = (a+b)(a-b) \] Here, let \(a = x\) and \(b = 4\). Therefore: \[ (x+4)(x-4) = x^2 - 4^2 = x^2 - 16 \] ### Step 2: Substitute Back into the Expression Now, we can substitute this result back into the original expression: \[ (x+4)(x-4)(x^2+16) = (x^2 - 16)(x^2 + 16) \] ### Step 3: Use the Difference of Squares Again Now we have a new expression \((x^2 - 16)(x^2 + 16)\). We can apply the difference of squares identity again: \[ a^2 - b^2 = (a+b)(a-b) \] Here, let \(a = x^2\) and \(b = 16\). Therefore: \[ (x^2 - 16)(x^2 + 16) = (x^2)^2 - 16^2 = x^4 - 256 \] ### Final Result Thus, the expression \((x+4)(x-4)(x^2+16)\) simplifies to: \[ \boxed{x^4 - 256} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

Evaluate : int(x^(2)-4)/(x^(4)+9x^(2)+16)dx

If int(x^(2)-4)/(x^(4)+9x^(2)+16)dx=tan^(-1)f(x)+c , then the value of f(4) is less than or equal to

(x^(2)-16)/(x-4)>=0

int(x^(2)-4)/(x^(4)+16)dx

int(x^(2)-4)/(x^(4)+24x^(2)+16)dx

Simplify : (x^(2)-4)+(x^(2)+4)+16

lim_(x rarr2)(x^(3)-3x^(2)+4)/(x^(4)-8x^(2)+16)