Home
Class 7
MATHS
25^(2)-15^(2)=...

`25^(2)-15^(2)=` ___

A

`(25+15)^(2)`

B

`(25-15)^(2)`

C

`(25+15)(25-15)`

D

`25xx15`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 25^2 - 15^2 \), we can use the algebraic identity for the difference of squares, which states: \[ a^2 - b^2 = (a + b)(a - b) \] ### Step-by-Step Solution: 1. **Identify \( a \) and \( b \)**: - Here, \( a = 25 \) and \( b = 15 \). 2. **Apply the identity**: - According to the identity, we can rewrite \( 25^2 - 15^2 \) as: \[ (25 + 15)(25 - 15) \] 3. **Calculate \( a + b \)**: - Calculate \( 25 + 15 \): \[ 25 + 15 = 40 \] 4. **Calculate \( a - b \)**: - Calculate \( 25 - 15 \): \[ 25 - 15 = 10 \] 5. **Multiply the results**: - Now, substitute back into the expression: \[ (40)(10) = 400 \] ### Final Answer: \[ 25^2 - 15^2 = 400 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

(25.732)^(2)-(15.732)^(2)=?

(3,4,5),(5,12,13),(8,15,17) etc.are Pythagorea triplets,because 3^(2)+4^(2)=25=5^(2)5^(2)+12^(2)=169=13^(2)8^(2)+15^(2)=289=17^(2)

(i) 12x^(2) + 11x + 2 = 0 (ii) 25y^(2) + 15y+2 = 0

If alpha and beta are the two zeros of the polynomial 25x^(2) - 15x + 2 , then what is a quadratic polynomial whose zeros are (2alpha)^(-1) and (2beta)^(-1) ?

If alpha and beta are the two zeros of the polynomial 25p^(2)-15p+2, a quadratic polynomial whose zeros are (1)/(2 alpha) and (1)/(2 beta) is

If a^(2)+9b^(2)+25c^(2)=abc((15)/(a)+(5)/(b)+(3)/(c)), then a,b,c are in

2[(16-15)^(-1)+25(13-8)^(-2)]^(-1)+(1024)^(0)= _______.

Divide: 25x^(3)y^(2)by-15x^(2)y(ii)-72x^(2)yzby-12xyz

If x=-2 and y=1, by using an identity find the value: (5y+(15)/(y))(25y^(2)-75+(225)/(y^(2)))