Home
Class 7
MATHS
(3x+((-1)/(4))+2y)^(2)=...

`(3x+((-1)/(4))+2y)^(2)=` ___

A

`9x^(2)-1/(16)+4y^(2)-(6x)/(4)-y+12xy`

B

`9x^(2)+1/(16)+4y^(2)+(6x)/(4)-y-12xy`

C

`9x^(2)+1/(16)+4y^(2)-(3x)/(2)-y+12xy`

D

`9x^(2)-1/(16)+4y^(2)+(3x)/(2)+y-12xy`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3x + (-\frac{1}{4}) + 2y)^2\), we can use the algebraic identity for the square of a sum. The identity states that: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca \] In our case, we can identify: - \(a = 3x\) - \(b = -\frac{1}{4}\) - \(c = 2y\) Now, we will apply the identity step by step. ### Step 1: Calculate \(a^2\) \[ a^2 = (3x)^2 = 9x^2 \] **Hint:** Square the coefficient and the variable separately. ### Step 2: Calculate \(b^2\) \[ b^2 = \left(-\frac{1}{4}\right)^2 = \frac{1}{16} \] **Hint:** Remember that squaring a negative number results in a positive number. ### Step 3: Calculate \(c^2\) \[ c^2 = (2y)^2 = 4y^2 \] **Hint:** Square the coefficient and the variable separately. ### Step 4: Calculate \(2ab\) \[ 2ab = 2 \cdot (3x) \cdot \left(-\frac{1}{4}\right) = -\frac{3}{2}x \] **Hint:** Multiply the coefficients and remember to include the negative sign. ### Step 5: Calculate \(2bc\) \[ 2bc = 2 \cdot \left(-\frac{1}{4}\right) \cdot (2y) = -\frac{1}{4} \cdot 4y = -y \] **Hint:** The \(2\) and \(2y\) will cancel out the fraction. ### Step 6: Calculate \(2ca\) \[ 2ca = 2 \cdot (2y) \cdot (3x) = 12xy \] **Hint:** Simply multiply the coefficients and combine with the variables. ### Step 7: Combine all parts Now we combine all the results from the previous steps: \[ (3x + (-\frac{1}{4}) + 2y)^2 = 9x^2 + \frac{1}{16} + 4y^2 - \frac{3}{2}x - y + 12xy \] ### Final Result Thus, the expression \((3x + (-\frac{1}{4}) + 2y)^2\) simplifies to: \[ 9x^2 + 4y^2 + 12xy - \frac{3}{2}x - y + \frac{1}{16} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

Which of the following line is passing through point of intersection of line (x-4)/(2)=(y-3)/(2)=(z-5)/(1) and the plane x+y+z=2( a) (x)/(2)=(y+1)/(3)=(z-3)/(4) (b) (x-2)/(3)=(y-1)/(3)=(z-2)/(2)(c)(x-2)/(2)=(y+1)/(3)=(z-2)/(4)(d)(x-2)/(2)=(y+1)/(3)=(z+3)/(4)

((1)/(2)x^(2)-(1)/(2)y^(2)+(1)/(4)z^(2))-((1)/(3)x^2+(1)/(4)y^(2)+(1)/(2)z^(2))+((1)/(4)x^(2)+(1)/(3)y^(2)+(1)/(3)z^(2))

If (x - ( 1)/( 3))^(2) + ( y - 4)^(2) = 0 , then what is the value of ( y +x)/( y -x) ?

If _(i-1)(x_(i)^(2)+y_(i)^(2))<=2x_(1)x_(3)+2x_(2)x_(4)+2y_(2)y_(3)+2y_(1)y_(4)sum_(i-1)^(4)(x_(i)^(2)+y_(i)^(2))<=2x_(1)x_(3)+2x_(2)x_(4)+2y_(2)y_(3)+2y_(1)y_(4) the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)),(x_(4),y_(4)) are the vertices of a rectangle collinear the vertices of a trapezium none of these

Solve the following pair ofequations by substitution method.(3)/(2)x-y=(1)/(4);x+(1)/(2)y=1 and 3x+y=4,2(y-5)=-5x

If y = 2x + 3x ^ (2) + 4x ^ (3) + ......., then (y) / (2) - (1.3) / (2!) ((Y) / (2) ) ^ (2) + (1.3.5) / (3!) ((Y) / (3)) ^ (3) -...... oo =

The solution of (dy)/(dx)=(1)/(2x-y^(2)) is given by , (A) y=Ce^(-2x)+(1)/(4)x^(2)+(1)/(2)x+(1)/(4)," 4"(1)/(2)," (B) "x=Ce^(-y)+(1)/(4)y^(2)+(1)/(4)y+(1)/(2)," (C) "x=Ce^(y)+(1)/(4)y^(2)+y+(1)/(2)," (D) "x=Ce^(2y)+(1)/(2)y^(2)+(1)/(2)y+(1)/(4)