Home
Class 7
MATHS
(x-y-z)^(2)-(x+y+z)^(2) is equal to...

`(x-y-z)^(2)-(x+y+z)^(2)` is equal to

A

`4xy+4yz`

B

`-4xy-4xz`

C

`4xy+4xz`

D

`-4yz`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((x - y - z)^2 - (x + y + z)^2\), we can use the algebraic identities for the square of a binomial. Let's break it down step by step. ### Step 1: Expand both squares using the identity The identity for the square of a binomial states that \((a - b)^2 = a^2 - 2ab + b^2\) and \((a + b)^2 = a^2 + 2ab + b^2\). 1. **Expand \((x - y - z)^2\)**: \[ (x - y - z)^2 = x^2 - 2x(y + z) + (y + z)^2 \] Expanding \((y + z)^2\): \[ (y + z)^2 = y^2 + 2yz + z^2 \] Thus, \[ (x - y - z)^2 = x^2 - 2xy - 2xz + y^2 + 2yz + z^2 \] 2. **Expand \((x + y + z)^2\)**: \[ (x + y + z)^2 = x^2 + 2x(y + z) + (y + z)^2 \] Again, expanding \((y + z)^2\): \[ (y + z)^2 = y^2 + 2yz + z^2 \] Thus, \[ (x + y + z)^2 = x^2 + 2xy + 2xz + y^2 + 2yz + z^2 \] ### Step 2: Subtract the two expansions Now we will subtract the second expansion from the first: \[ (x - y - z)^2 - (x + y + z)^2 = (x^2 - 2xy - 2xz + y^2 + 2yz + z^2) - (x^2 + 2xy + 2xz + y^2 + 2yz + z^2) \] ### Step 3: Simplify the expression Now, we will simplify the expression: - The \(x^2\), \(y^2\), \(z^2\), and \(2yz\) terms cancel out: \[ = -2xy - 2xz - 2xy - 2xz \] Combining like terms: \[ = -4xy - 4xz \] ### Final Result Thus, the expression \((x - y - z)^2 - (x + y + z)^2\) simplifies to: \[ \boxed{-4xy - 4xz} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

The product (x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)] is equal to

Simplify : ( y - z )^2 + ( z - x )^2 + ( x - y )^2 is equal to

If sin^(-1)x+sin^(-1)y+sin^(-1)z=3 pi/2 then the value of 3000(x+y+z)-(816)/(x^(2)+y^(2)+z^(2)) is equal to 8730-alpha where alpha=

If x, y and z are the roots of the equation 2t^(3)-(tan[x+y+z]pi)t^(2)-11t+2020=0 , then |(x,y,z),(y,z,x),(z,x,y)| is equal to (where, [x] denotes the greatest integral value less than or equal to x)

If |[y+z,x,y],[z+x,z,x],[x+y,y,z]|=k(x+y+z)(x-z)^2 then k is equal to

x+y-(z-x-[y+z-(x+y-{z+x-(y+z+x)})]) is equal to