Home
Class 7
MATHS
If x+y+z=0, then x^(2)+xy+y^(2) equals...

If `x+y+z=0`, then `x^(2)+xy+y^(2)` equals

A

`y^(2)+yz+z^(2)`

B

`y^(2)-yz+z^(2)`

C

`z^(2)-xy`

D

`z^(2)+zx+x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + xy + y^2 \) given that \( x + y + z = 0 \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ x + y + z = 0 \] 2. **Rearrange the equation to express \( x + y \)**: \[ x + y = -z \] 3. **Substitute \( x + y \) into the expression \( x^2 + xy + y^2 \)**: We can rewrite \( x^2 + xy + y^2 \) by adding and subtracting \( xy \): \[ x^2 + xy + y^2 = x^2 + 2xy + y^2 - xy \] 4. **Recognize the algebraic identity**: The expression \( x^2 + 2xy + y^2 \) can be rewritten using the square of a binomial: \[ x^2 + 2xy + y^2 = (x + y)^2 \] Therefore, we can rewrite our expression as: \[ x^2 + xy + y^2 = (x + y)^2 - xy \] 5. **Substitute \( x + y \) with \(-z\)**: Now substituting \( x + y = -z \): \[ (x + y)^2 = (-z)^2 = z^2 \] So we have: \[ x^2 + xy + y^2 = z^2 - xy \] 6. **Final expression**: Thus, the value of \( x^2 + xy + y^2 \) is: \[ x^2 + xy + y^2 = z^2 - xy \] ### Conclusion: The expression \( x^2 + xy + y^2 \) simplifies to \( z^2 - xy \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRIC IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet-7|10 Videos
  • ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-17|1 Videos
  • AVERAGE

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -3 |20 Videos

Similar Questions

Explore conceptually related problems

If x-2y+2z=0, then x^(3)-8y^(3)+8z^(3) is equal to

If x+y-7=0 and 3x+y-13=0 , then what is 4x^(2)+y^(2)+4xy equal to ?

If x + y -7 =0 and 3x + y -13 = 0 . then what is 4x^(2) + y^(2) + 4xy equal to?

(x-y-z)^(2)-(x+y+z)^(2) is equal to