Home
Class 8
MATHS
Simplify: (x^(a)/x^(b))^(a+b). (x^(b)/x^...

Simplify: `(x^(a)/x^(b))^(a+b). (x^(b)/x^(c ))^(b+c) .(x^( c)/x^(a))^(c+a)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((\frac{x^a}{x^b})^{a+b} \cdot (\frac{x^b}{x^c})^{b+c} \cdot (\frac{x^c}{x^a})^{c+a}\), we can follow these steps: ### Step 1: Apply the Quotient Rule Using the property of exponents that states \(\frac{x^m}{x^n} = x^{m-n}\), we can rewrite each fraction in the expression: \[ \frac{x^a}{x^b} = x^{a-b}, \quad \frac{x^b}{x^c} = x^{b-c}, \quad \frac{x^c}{x^a} = x^{c-a} \] ### Step 2: Rewrite the Expression Now we can rewrite the entire expression using the results from Step 1: \[ (x^{a-b})^{a+b} \cdot (x^{b-c})^{b+c} \cdot (x^{c-a})^{c+a} \] ### Step 3: Apply the Power of a Power Rule Using the property \((x^m)^n = x^{m \cdot n}\), we can simplify each term: \[ x^{(a-b)(a+b)} \cdot x^{(b-c)(b+c)} \cdot x^{(c-a)(c+a)} \] ### Step 4: Combine the Exponents Since we are multiplying powers with the same base, we can add the exponents: \[ x^{(a-b)(a+b) + (b-c)(b+c) + (c-a)(c+a)} \] ### Step 5: Expand Each Term Now we will expand each term in the exponent: 1. \((a-b)(a+b) = a^2 - b^2\) 2. \((b-c)(b+c) = b^2 - c^2\) 3. \((c-a)(c+a) = c^2 - a^2\) ### Step 6: Combine the Expanded Terms Now we combine the expanded terms: \[ a^2 - b^2 + b^2 - c^2 + c^2 - a^2 \] ### Step 7: Simplify the Expression Notice that the terms cancel out: \[ a^2 - a^2 + b^2 - b^2 + c^2 - c^2 = 0 \] ### Final Result Thus, the entire expression simplifies to: \[ x^0 = 1 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK |35 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • DISTANCE, TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test-3 |20 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos

Similar Questions

Explore conceptually related problems

If y = ((x^(a))/(x^(b)))^(a + b) ((x^(b))/(x^(c)))^(b + c) ((x^(c))/(x^(a)))^(c + a) , "then" (dy)/(dx) is equal to

For any positive real number x, find the value of ((x^(a))/(x^(b)))^(a+b)x((x^(b))/(x^(c)))^(b+c)x((x^(c))/(x^(a)))^(c+a)

Simplify: ((x^(a))/(x^(-b)))^(a-b)xx((x^(b))/(x^(-c)))^(b-c)xx((x^(c))/(x^(-a)))^(c-a)

Differentiate ((x^(a))/(x^(b)))^(a+b)*((x^(b))/(x^(c)))^(b+c)*((x^(c))/(x^(a)))^(c+a) with respect to x.

The value of ((x^(a))/(x^(b)))^(a+b) xx ((x^(b))/(x^(c)))^(b+c) xx ((x^(c))/(x^(a)))^(c + a) is equal to

Assuming that x is a positive real number and a,b,c are rational numbers,show that: ((x^(a))/(x^(b)))^(a+b)((x^(b))/(x^(c)))^(b+c)((x^(c))/(x^(a)))^(c+a)=1

Prove that :((x^(a))/(x^(b)))^(a+b-c)((x^(b))/(x^(c)))^(b+c-a)((x^(c))/(x^(a)))^(c+a-b)=1

((x^(a))/(x^(b)))^(a+b)*((x^(b))/(x^(c)))^(b+c)*((x^(c))/(x^(a)))^(c+a)=? a.0 b.x^(abc) c.x^(a+b+c)d.1=? a.0