Home
Class 8
MATHS
1/(216)^(-2/3) + 1/(256)^(-3/4) + 1/(243...

`1/(216)^(-2/3) + 1/(256)^(-3/4) + 1/(243)^(-1/5)` is equal to:

A

103

B

105

C

107

D

101

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{216^{-\frac{2}{3}}} + \frac{1}{256^{-\frac{3}{4}}} + \frac{1}{243^{-\frac{1}{5}}} \), we will simplify each term step by step. ### Step 1: Rewrite the bases as powers We can express the numbers in the denominators as powers of smaller integers: - \( 216 = 6^3 \) - \( 256 = 4^4 \) - \( 243 = 3^5 \) So, we rewrite the expression: \[ \frac{1}{(6^3)^{-\frac{2}{3}}} + \frac{1}{(4^4)^{-\frac{3}{4}}} + \frac{1}{(3^5)^{-\frac{1}{5}}} \] ### Step 2: Apply the power of a power rule Using the rule \( (a^m)^n = a^{m \cdot n} \): - For \( 216 \): \( (6^3)^{-\frac{2}{3}} = 6^{3 \cdot -\frac{2}{3}} = 6^{-2} \) - For \( 256 \): \( (4^4)^{-\frac{3}{4}} = 4^{4 \cdot -\frac{3}{4}} = 4^{-3} \) - For \( 243 \): \( (3^5)^{-\frac{1}{5}} = 3^{5 \cdot -\frac{1}{5}} = 3^{-1} \) Now the expression becomes: \[ \frac{1}{6^{-2}} + \frac{1}{4^{-3}} + \frac{1}{3^{-1}} \] ### Step 3: Simplify the fractions Using the property \( \frac{1}{a^{-n}} = a^n \): - \( \frac{1}{6^{-2}} = 6^2 \) - \( \frac{1}{4^{-3}} = 4^3 \) - \( \frac{1}{3^{-1}} = 3^1 \) So now we have: \[ 6^2 + 4^3 + 3^1 \] ### Step 4: Calculate each term Now we calculate each power: - \( 6^2 = 36 \) - \( 4^3 = 64 \) - \( 3^1 = 3 \) ### Step 5: Add the results Now we add these values together: \[ 36 + 64 + 3 = 103 \] Thus, the final answer is: \[ \boxed{103} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • DISTANCE, TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test-3 |20 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos

Similar Questions

Explore conceptually related problems

(0.216)^(1/3)

The value of (1)/((216)^(-2/3))+(1)/((256)^(-3/4))+(1)/((32)^(-1/5)) is a.102 b.105c.107d.109

4xx(256)^((-1)/4) div (243)^(1/5)=

3(1)/(5)+1(2)/(3) is equal to

Simplify: (4)/((216)^(-(2)/(3)))+(1)/((256)^(-(3)/(4)))+(2)/((243)^(-(1)/(5)))

S CHAND IIT JEE FOUNDATION-EXPONENTS -QUESTION BANK
  1. If sqrt(3^(n)) = 81. Then, n is equal to:

    Text Solution

    |

  2. (64)^(-2/3) xx (1/4)^(-3) equals:

    Text Solution

    |

  3. 1/(216)^(-2/3) + 1/(256)^(-3/4) + 1/(243)^(-1/5) is equal to:

    Text Solution

    |

  4. (4)^(0.5) xx (0.5)^(4) is equal to:

    Text Solution

    |

  5. (1/64)^(0)+(64)^(-1/2)+(32)^(4/5)-(32)^(-4/5)=?

    Text Solution

    |

  6. Simplify: [(2 10/27))^(-2/3) ÷ (11 1/9))^(-0.5)] +[(6.25)^(0.5) ÷ (-4)...

    Text Solution

    |

  7. Simplify: ((6.25)^(1/2) xx (0.0144)^(1/2)+ 1)/((0.027)^(1/3)xx (81)^(1...

    Text Solution

    |

  8. 4^(3.5) : 2^(5) is the same as:

    Text Solution

    |

  9. Simplify: [root(3)(root(6)(5^(9)))]^(8)[root(6)(root(3)(5^(9)))]^(8)

    Text Solution

    |

  10. The value of ((243)^(n/5). 3^(2n+1))/(9^(n).3^(n-1)) is:

    Text Solution

    |

  11. If x^(xsqrt(x))=(xsqrt(x))^(x), then x is equal to:

    Text Solution

    |

  12. [1-[1-(1-a^(4))^(-1)]^(-1)]^(-1/4) is equal to:

    Text Solution

    |

  13. If 64^(a) =1/(256)^(b), then 3a + 4b equals

    Text Solution

    |

  14. If a=b^(2/3) and b =c^(2), what is the value of a in terms of c?

    Text Solution

    |

  15. The value of (5.(25)^(n+1) + 25.(5)^(2n-1))/(25.(5)^(2n) -105(25)^(n-1...

    Text Solution

    |

  16. If 5sqrt(5) xx 5^(3) /5^(-3/2) = 5^(a +2) then the value of a is

    Text Solution

    |

  17. What is the expression (x+y)^(-1) (x^(-1) +y^(-1)) (xy^(-1) +x^(-1)y)^...

    Text Solution

    |

  18. If 2^(x) - 2^(x-1)=4, then what is the value of 2^(x) + 2^(x-1) ?

    Text Solution

    |

  19. If x=y^(z), y = z^(x) and z=x^(y), then

    Text Solution

    |

  20. Prove that: 1/(1+x^(b-a)+\ x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-...

    Text Solution

    |