Home
Class 8
MATHS
Simplify: [(2 10/27))^(-2/3) ÷ (11 1/9))...

Simplify: `[(2 10/27))^(-2/3) ÷ (11 1/9))^(-0.5)] +[(6.25)^(0.5) ÷ (-4)^(-1)]`

A

`-8 (1/8)`

B

`8(1/8)`

C

`1(7/8)`

D

`-1(7/8)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression `[(2 10/27)^(-2/3) ÷ (11 1/9)^(-0.5)] + [(6.25)^(0.5) ÷ (-4)^(-1)]`, we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions Convert `2 10/27` and `11 1/9` into improper fractions. - For `2 10/27`: \[ 2 = \frac{2 \times 27 + 10}{27} = \frac{54 + 10}{27} = \frac{64}{27} \] - For `11 1/9`: \[ 11 = \frac{11 \times 9 + 1}{9} = \frac{99 + 1}{9} = \frac{100}{9} \] ### Step 2: Rewrite the Expression Now rewrite the expression using these improper fractions: \[ \left(\frac{64}{27}\right)^{-2/3} \div \left(\frac{100}{9}\right)^{-1/2} + \left(6.25\right)^{1/2} \div \left(-4\right)^{-1} \] ### Step 3: Convert Decimal to Fraction Convert `6.25` to a fraction: \[ 6.25 = \frac{625}{100} = \frac{25}{4} \] ### Step 4: Rewrite the Expression Again Now the expression looks like this: \[ \left(\frac{64}{27}\right)^{-2/3} \div \left(\frac{100}{9}\right)^{-1/2} + \left(\frac{25}{4}\right)^{1/2} \div \left(-4\right)^{-1} \] ### Step 5: Apply the Negative Exponents Using the property \(a^{-n} = \frac{1}{a^n}\): \[ \left(\frac{64}{27}\right)^{-2/3} = \frac{1}{\left(\frac{64}{27}\right)^{2/3}} \quad \text{and} \quad \left(\frac{100}{9}\right)^{-1/2} = \frac{1}{\left(\frac{100}{9}\right)^{1/2}} \] ### Step 6: Simplify Each Term 1. Simplify \(\left(\frac{64}{27}\right)^{2/3}\): \[ = \frac{64^{2/3}}{27^{2/3}} = \frac{(4^3)^{2/3}}{(3^3)^{2/3}} = \frac{4^2}{3^2} = \frac{16}{9} \] 2. Simplify \(\left(\frac{100}{9}\right)^{1/2}\): \[ = \frac{10}{3} \] 3. Now substitute back: \[ \frac{1}{\frac{16}{9}} \div \frac{1}{\frac{10}{3}} = \frac{9}{16} \times \frac{3}{10} = \frac{27}{160} \] ### Step 7: Simplify the Second Part 1. Simplify \(\left(\frac{25}{4}\right)^{1/2}\): \[ = \frac{5}{2} \] 2. Simplify \((-4)^{-1}\): \[ = -\frac{1}{4} \] 3. Now substitute back: \[ \frac{5}{2} \div -\frac{1}{4} = \frac{5}{2} \times -4 = -10 \] ### Step 8: Combine Both Parts Now combine both parts: \[ \frac{27}{160} - 10 \] ### Step 9: Convert -10 to a Fraction Convert \(-10\) to a fraction with a denominator of 160: \[ -10 = -\frac{1600}{160} \] ### Step 10: Combine the Fractions Combine the fractions: \[ \frac{27}{160} - \frac{1600}{160} = \frac{27 - 1600}{160} = \frac{-1573}{160} \] ### Final Answer Thus, the simplified expression is: \[ -\frac{1573}{160} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • DISTANCE, TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test-3 |20 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos

Similar Questions

Explore conceptually related problems

Simplify : 2(3)/(4)-1(5)/(6)

Simplify 2/5 of 0.6+(2.4)/8-0.2

((1)/(3))^(-10)*27^(-3)+((1)/(5))^(-4)*(25)^(-2)+(64^((1)/(9)))

Simplify: ((6.25)^(1/2) xx (0.0144)^(1/2)+ 1)/((0.027)^(1/3)xx (81)^(1/4))

Simplify. (i) ((15^(1//3))/(9^(1//4)))^(-6) (ii) ((12^(1//5))/(27^(1//5)))^(5//2) (iii) ((15^(1//4))/(3^(1//2)))^(-2)

Simplify: (a) 108-:36 of (1)/(4)+(2)/(5)xx3(1)/(4) (b) (2)/(3)xx(5)/(6)+(4)/(9)-(3)/(4)+(2)/(9)xx(5)/(9)-:(2)/(9)

S CHAND IIT JEE FOUNDATION-EXPONENTS -QUESTION BANK
  1. (4)^(0.5) xx (0.5)^(4) is equal to:

    Text Solution

    |

  2. (1/64)^(0)+(64)^(-1/2)+(32)^(4/5)-(32)^(-4/5)=?

    Text Solution

    |

  3. Simplify: [(2 10/27))^(-2/3) ÷ (11 1/9))^(-0.5)] +[(6.25)^(0.5) ÷ (-4)...

    Text Solution

    |

  4. Simplify: ((6.25)^(1/2) xx (0.0144)^(1/2)+ 1)/((0.027)^(1/3)xx (81)^(1...

    Text Solution

    |

  5. 4^(3.5) : 2^(5) is the same as:

    Text Solution

    |

  6. Simplify: [root(3)(root(6)(5^(9)))]^(8)[root(6)(root(3)(5^(9)))]^(8)

    Text Solution

    |

  7. The value of ((243)^(n/5). 3^(2n+1))/(9^(n).3^(n-1)) is:

    Text Solution

    |

  8. If x^(xsqrt(x))=(xsqrt(x))^(x), then x is equal to:

    Text Solution

    |

  9. [1-[1-(1-a^(4))^(-1)]^(-1)]^(-1/4) is equal to:

    Text Solution

    |

  10. If 64^(a) =1/(256)^(b), then 3a + 4b equals

    Text Solution

    |

  11. If a=b^(2/3) and b =c^(2), what is the value of a in terms of c?

    Text Solution

    |

  12. The value of (5.(25)^(n+1) + 25.(5)^(2n-1))/(25.(5)^(2n) -105(25)^(n-1...

    Text Solution

    |

  13. If 5sqrt(5) xx 5^(3) /5^(-3/2) = 5^(a +2) then the value of a is

    Text Solution

    |

  14. What is the expression (x+y)^(-1) (x^(-1) +y^(-1)) (xy^(-1) +x^(-1)y)^...

    Text Solution

    |

  15. If 2^(x) - 2^(x-1)=4, then what is the value of 2^(x) + 2^(x-1) ?

    Text Solution

    |

  16. If x=y^(z), y = z^(x) and z=x^(y), then

    Text Solution

    |

  17. Prove that: 1/(1+x^(b-a)+\ x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-...

    Text Solution

    |

  18. Find the value of x if [3^(2x-2) +10] // 13=7

    Text Solution

    |

  19. Prove that: (2^(1/2)\ x\ 3^(1/3)\ x\ 4^(1/4))/(10^(-1/5)\ x\ 5^(3/5))\...

    Text Solution

    |

  20. x^((a+b-c)/((a-c)(b-c))) . x^((b+c-a)/((b-a)(c-a))) . x^((c+a-b)/((c-b...

    Text Solution

    |