Home
Class 8
MATHS
The value of ((243)^(n/5). 3^(2n+1))/(9^...

The value of `((243)^(n/5). 3^(2n+1))/(9^(n).3^(n-1))` is:

A

1

B

9

C

3

D

`3^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(243)^{(n/5)} \cdot 3^{(2n+1)}}{9^n \cdot 3^{(n-1)}}\), we can follow these steps: ### Step 1: Rewrite the bases First, we can express \(243\) and \(9\) in terms of base \(3\): - \(243 = 3^5\) - \(9 = 3^2\) So, we can rewrite the expression as: \[ \frac{(3^5)^{(n/5)} \cdot 3^{(2n+1)}}{(3^2)^n \cdot 3^{(n-1)}} \] ### Step 2: Apply the power of a power rule Using the power of a power rule, \((a^m)^n = a^{m \cdot n}\), we can simplify: \[ (3^5)^{(n/5)} = 3^{(5 \cdot n/5)} = 3^n \] \[ (3^2)^n = 3^{(2n)} \] Now, substituting these back into the expression gives us: \[ \frac{3^n \cdot 3^{(2n+1)}}{3^{(2n)} \cdot 3^{(n-1)}} \] ### Step 3: Combine the powers in the numerator In the numerator, we can combine the powers of \(3\): \[ 3^n \cdot 3^{(2n+1)} = 3^{n + 2n + 1} = 3^{(3n + 1)} \] ### Step 4: Combine the powers in the denominator In the denominator, we can also combine the powers of \(3\): \[ 3^{(2n)} \cdot 3^{(n-1)} = 3^{(2n + n - 1)} = 3^{(3n - 1)} \] ### Step 5: Simplify the expression Now we can simplify the entire expression: \[ \frac{3^{(3n + 1)}}{3^{(3n - 1)}} \] Using the quotient rule for exponents, \(\frac{a^m}{a^n} = a^{m-n}\): \[ 3^{(3n + 1) - (3n - 1)} = 3^{(3n + 1 - 3n + 1)} = 3^{2} \] ### Final Result Thus, the value of the expression is: \[ 3^2 = 9 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • DISTANCE, TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test-3 |20 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos

Similar Questions

Explore conceptually related problems

Fnd the value: ((243)^((n)/(5))3^(2n+1))/(9^(n)*3^(n-1))

Find the value of (3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1)) .

If ((243)^((n)/(5))3^(2n+1))/(9^(n)3^(n-1))=x, then the value of x is

Find the value of (3^(12+n)xx9^(2n-7))/(3^(5n))

S CHAND IIT JEE FOUNDATION-EXPONENTS -QUESTION BANK
  1. 4^(3.5) : 2^(5) is the same as:

    Text Solution

    |

  2. Simplify: [root(3)(root(6)(5^(9)))]^(8)[root(6)(root(3)(5^(9)))]^(8)

    Text Solution

    |

  3. The value of ((243)^(n/5). 3^(2n+1))/(9^(n).3^(n-1)) is:

    Text Solution

    |

  4. If x^(xsqrt(x))=(xsqrt(x))^(x), then x is equal to:

    Text Solution

    |

  5. [1-[1-(1-a^(4))^(-1)]^(-1)]^(-1/4) is equal to:

    Text Solution

    |

  6. If 64^(a) =1/(256)^(b), then 3a + 4b equals

    Text Solution

    |

  7. If a=b^(2/3) and b =c^(2), what is the value of a in terms of c?

    Text Solution

    |

  8. The value of (5.(25)^(n+1) + 25.(5)^(2n-1))/(25.(5)^(2n) -105(25)^(n-1...

    Text Solution

    |

  9. If 5sqrt(5) xx 5^(3) /5^(-3/2) = 5^(a +2) then the value of a is

    Text Solution

    |

  10. What is the expression (x+y)^(-1) (x^(-1) +y^(-1)) (xy^(-1) +x^(-1)y)^...

    Text Solution

    |

  11. If 2^(x) - 2^(x-1)=4, then what is the value of 2^(x) + 2^(x-1) ?

    Text Solution

    |

  12. If x=y^(z), y = z^(x) and z=x^(y), then

    Text Solution

    |

  13. Prove that: 1/(1+x^(b-a)+\ x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-...

    Text Solution

    |

  14. Find the value of x if [3^(2x-2) +10] // 13=7

    Text Solution

    |

  15. Prove that: (2^(1/2)\ x\ 3^(1/3)\ x\ 4^(1/4))/(10^(-1/5)\ x\ 5^(3/5))\...

    Text Solution

    |

  16. x^((a+b-c)/((a-c)(b-c))) . x^((b+c-a)/((b-a)(c-a))) . x^((c+a-b)/((c-b...

    Text Solution

    |

  17. The value of (x^(q)/x^(r))^(1/(qr)) xx (x^(r)/x^(p))^(1/(rp)) xx (x^(p...

    Text Solution

    |

  18. The largest number among the following is:

    Text Solution

    |

  19. If 6^(x) -36=7740, then x^(x) =

    Text Solution

    |

  20. The value of: (9^(x)(9^(x-1)))^(x)/(9^(x+1).3^(2x-2)){(729^(x/3))/8...

    Text Solution

    |