Home
Class 8
MATHS
[1-[1-(1-a^(4))^(-1)]^(-1)]^(-1/4) is eq...

`[1-[1-(1-a^(4))^(-1)]^(-1)]^(-1/4)` is equal to:

A

`a^(4)`

B

`a^(2)`

C

a

D

`1/a`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \([1-[1-(1-a^{4})^{-1}]^{-1}]^{-1/4}\), we will follow these steps: ### Step-by-Step Solution: 1. **Start with the innermost expression**: \[ 1 - a^4 \] This is the expression we will manipulate first. 2. **Apply the negative exponent**: The expression becomes: \[ (1 - a^4)^{-1} = \frac{1}{1 - a^4} \] 3. **Substitute back into the expression**: Now we replace the innermost part in the original expression: \[ 1 - \frac{1}{1 - a^4} \] 4. **Combine the fractions**: To combine the fractions, we need a common denominator: \[ 1 - \frac{1}{1 - a^4} = \frac{(1 - a^4) - 1}{1 - a^4} = \frac{-a^4}{1 - a^4} \] 5. **Substitute back into the expression**: Now we have: \[ 1 - \left(\frac{-a^4}{1 - a^4}\right)^{-1} \] 6. **Apply the negative exponent again**: This becomes: \[ 1 - \left(\frac{1 - a^4}{-a^4}\right) = 1 + \frac{1 - a^4}{a^4} \] 7. **Combine the fractions**: Combine the fractions: \[ 1 + \frac{1 - a^4}{a^4} = \frac{a^4 + 1 - a^4}{a^4} = \frac{1}{a^4} \] 8. **Final exponent application**: Now we take the entire expression to the power of \(-\frac{1}{4}\): \[ \left(\frac{1}{a^4}\right)^{-1/4} = a^{4 \cdot \frac{1}{4}} = a \] Thus, the simplified expression is: \[ \boxed{a} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • DISTANCE, TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test-3 |20 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos

Similar Questions

Explore conceptually related problems

(-64)^(1//4) is equal to-

[(3-4(3-4)^(-1)]^(-1) is equal to :

(1+i)^(4)+(1-i)^( 4) is equal to

{((1)/(3))^(-1)-((1)/(4))^(-1)}^(-1) is equal to.

{(3/4)^(-1)-(1/4)^(-1)}^(-1)

(sqrt(3)+1)^(4)+(sqrt(3)-1)^(4) is equal to

tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

lim_(x rarr oo)(sqrt(x^(2)+1)-(x^(2)+1)^((1)/(3)))/((x^(4)+1)^((1)/(4))-(x^(4)-1)^((1)/(5))) is equal to

S CHAND IIT JEE FOUNDATION-EXPONENTS -QUESTION BANK
  1. The value of ((243)^(n/5). 3^(2n+1))/(9^(n).3^(n-1)) is:

    Text Solution

    |

  2. If x^(xsqrt(x))=(xsqrt(x))^(x), then x is equal to:

    Text Solution

    |

  3. [1-[1-(1-a^(4))^(-1)]^(-1)]^(-1/4) is equal to:

    Text Solution

    |

  4. If 64^(a) =1/(256)^(b), then 3a + 4b equals

    Text Solution

    |

  5. If a=b^(2/3) and b =c^(2), what is the value of a in terms of c?

    Text Solution

    |

  6. The value of (5.(25)^(n+1) + 25.(5)^(2n-1))/(25.(5)^(2n) -105(25)^(n-1...

    Text Solution

    |

  7. If 5sqrt(5) xx 5^(3) /5^(-3/2) = 5^(a +2) then the value of a is

    Text Solution

    |

  8. What is the expression (x+y)^(-1) (x^(-1) +y^(-1)) (xy^(-1) +x^(-1)y)^...

    Text Solution

    |

  9. If 2^(x) - 2^(x-1)=4, then what is the value of 2^(x) + 2^(x-1) ?

    Text Solution

    |

  10. If x=y^(z), y = z^(x) and z=x^(y), then

    Text Solution

    |

  11. Prove that: 1/(1+x^(b-a)+\ x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-...

    Text Solution

    |

  12. Find the value of x if [3^(2x-2) +10] // 13=7

    Text Solution

    |

  13. Prove that: (2^(1/2)\ x\ 3^(1/3)\ x\ 4^(1/4))/(10^(-1/5)\ x\ 5^(3/5))\...

    Text Solution

    |

  14. x^((a+b-c)/((a-c)(b-c))) . x^((b+c-a)/((b-a)(c-a))) . x^((c+a-b)/((c-b...

    Text Solution

    |

  15. The value of (x^(q)/x^(r))^(1/(qr)) xx (x^(r)/x^(p))^(1/(rp)) xx (x^(p...

    Text Solution

    |

  16. The largest number among the following is:

    Text Solution

    |

  17. If 6^(x) -36=7740, then x^(x) =

    Text Solution

    |

  18. The value of: (9^(x)(9^(x-1)))^(x)/(9^(x+1).3^(2x-2)){(729^(x/3))/8...

    Text Solution

    |

  19. Find the value of (2^(1//4)- 1) (2^(3//4) + 2^(1//2) +2^(1//4) + 1)

    Text Solution

    |

  20. Simplify: (a^(1/2) +a^(-1/2))/(1-a) + (1-a^(-1/2))/(1-sqrt(a))

    Text Solution

    |